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ABSTRACT 
 

ESTABLISHING THE TRANSIENT MASS BALANCE OF 
THROMBOSIS UNDER VENOUS FLOW: FROM A MICROFLUIDIC 

APPROACH TO A REDUCED MODEL  
 

Jason Chen 
 

Scott L. Diamond 
 
 

Coagulation kinetics are well established in well plates assays in which human 

plasma clots isotropically. However, less is known about thrombin kinetics and transport 

within clots formed under hemodynamic flow. Using microfluidic perfusion of Factor XIIa-

inhibited human whole blood over a 250-micron long patch of collagen/tissue factor and 

immunoassays of the effluent for fragment 1.2, thrombin-antithrombin, and D-dimer (post-

endpoint plasmin digest), we sought to establish the transient mass balance for clotting 

under venous flow. Based upon these measurements under flow conditions, we have 

developed a highly reduced extrinsic pathway coagulation model (7 ODEs) under flow 

considering a thin 15-micron platelet layer where transport limitations were largely 

negligible (except for fibrinogen) and where cofactors (FVIIa, FV, FVIII) were not rate-

limiting. By including thrombin feedback activation of FXI and the antithrombin-I activities 

of fibrin, the model accurately simulated measured fibrin formation and thrombin fluxes. 

The model required free thrombin in the clot (~100 nM) to have an elution half-life of ~2 

sec, consistent with measured albumin elution, with most thrombin being fibrin-bound. 

Thrombin-feedback activation of FXIa became prominent and reached 5 pM at >500 sec 

in the simulation, consistent with anti-FXIa experiments. Further, we did a sensitivity 

analysis by conducting 10,000 Monte Carlo simulations for ±50% variation of 5 plasma 

zymogens and 2 fibrin binding sites for thrombin. A sensitivity analysis of zymogen 



www.manaraa.com

v 

concentrations indicated that FIX activity most influenced thrombin generation, a result 

expected from hemophilia A and B.  Averaging all MC simulations confirmed both the 

mean and standard deviation of measured fibrin generation on 1 tissue factor molecule 

per µm2. Across all simulations, free thrombin in the layer ranged from 20 to 300 nM with 

a mean 50 nM. The model also suggested the antithrombotic potency of FXIa inhibitors 

may vary depending on normal ranges of zymogen concentrations. To sum up, our 

reduced model, which supported by experimental data, predicts thrombin and fibrin co-

regulation during thrombosis under flow, gives insights into the dynamics of the species 

involved and may be useful for multiscale simulation. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Hemostasis and Thrombosis 

To prevent bleeding from body, blood will clot in response to injury known as 

hemostasis. Hemostasis is comprised of two system: platelet aggregation and blood 

coagulation. A platelet can adhere to the damaged tissue by exposed collagen or von 

Willebrand Factor (vWF) and undergo an activation process that involves changes in the 

platelet’s surface membrane. The activated platelets release several chemicals from 

intracellular granules, such as adenosine diphosphate (ADP) and thromboxane A2 (TXA2), 

to further recruit circulating platelets and form a platelet plug. Meanwhile, the exposed 

tissue factor (TF) triggers the extrinsic pathway of coagulation. The final and main enzyme 

in the series is thrombin, which cleaves the plasma protein fibrinogen into fibrin monomers. 

These monomers polymerize, cross-link to form a fibrous mesh and stabilize the 

aggregate. Together, the platelet aggregate and fibrin mesh constitute the blood clot, and 

their formation comprises hemostasis, the normal response to vessel injury to prevent 

blood loss. 

These two processes are also the major components of thrombosis, a pathological 

process that involves formation of a clot inside a blood vessel and that can lead to the 

complete occlusion of the vessel and consequent blockage of oxygen and nutrients from 

important organs. Understanding these processes and how they are regulated is of major 

medical importance.  

 

1.2 Coagulation Cascade 

The coagulation cascade has two distinctive and initial pathways, the extrinsic 

pathway and intrinsic pathway. These pathways are series of reactions. The extrinsic 
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tenase/IXase (TF/FVIIa), formed by tissue factor exposed on disrupted endothelium and 

circulating factor VII, converts FX to FXa and FIX to FIXa. Initiated by anionic surfaces 

and along with conversion of activated cofactors FVIIIa and FVa, the intrinsic tenase 

(FIXa/FVIIIa) dramatically amplifies production of FXa. These two pathways lead to 

prothrombinase (FXa/FVa) and generate thrombin. Besides converting fibrinogen to fibrin, 

thrombin also activates FXIIIa and leads to fibrin crosslink. Thrombin is also responsible 

for its self-amplification by the FXIa-dependent feedback pathway, which is found to be a 

promising drug target for thrombosis with minimal bleeding risk. 

Fibrin has ‘antithrombin-I activity’ via two thrombin binding sites: the low affinity 

site and the high affinity site of the alternative splice variant, g’-fibrin(ogen). The g’-

fibrinogen splice variant represents about 6-8% of total g-chains [1]. γ′ fibrinogen has 

shown to be associated with cardiovascular disease .[2].  During thrombosis under flow, 

thrombin can be captured by the deposited fibrin via tight binding with g’-fibrin. In acute 

phase response states g’-fibrinogen levels can change [3]. It is important to understand 

thrombin binding to fibrin but few simulations of clotting under flow include these reactions. 

 

1.3 Microfluidics Approaches 

Blood clotting is well studied in well plates assays; however, it displays a core/shell 

structure in hemostatic plugs under flow [4]. Microfluidic devices are ideal technique in the 

study of blood function. With minimal volume of blood, we are able to control the 

physiological hemodynamic conditions. Our lab has developed the high-throughput eight-

channel device to study human blood clotting under flow in vitro [5,6]. With micropatterning 

techniques, we can control the contribution of tissue factor pathway and contact pathway 

on the procoagulant surfaces. In addition, low level of tissue factor surfaces allowed 

observable crosstalk between extrinsic pathway generation of thrombin and FXIa-
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dependent feedback pathway [7]. Human whole blood can be perfused at venous or 

arterial shear rates with platelet and fibrin deposition measured in real time by 

fluorescence microscopy. These devices have been previously reviewed [5,6]. 
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CHAPTER 2: THE TRANSIENT MASS BALANCE OF 
THROMBOSIS AND THE REDUCED MODEL 

 
 
2.1 Establishing the transient mass balance of thrombosis: From tissue factor to 

thrombin to fibrin under venous flow 

2.1.1 Introduction 

Upon vessel injury or plaque rupture, platelets rapidly deposit at the perturbed site. 

Additionally, thrombin is generated by the coagulation cascade triggered by wall-exposed 

tissue factor (TF). Thrombin functions as a key driver of clotting by promoting human 

platelet activation via PAR1 and PAR4 and by cleaving fibrinogen for fibrin polymerization. 

The mouse laser injury model has revealed a heterogeneous clot structure with a tightly 

packed ‘core’ of activated platelets and a less stable and loosely packed outer ‘shell’ of 

less activated platelets [4,8]. Similarly, in microfluidic experiments with human blood, a P-

selectin positive core is detected that is co-localized with thrombin and fibrin. The 

thickness of the core region depends on the localization of thrombin since thrombin 

localization detected with a platelet-targeting biosensor [9] is highly correlated temporally 

and spatially with P-selectin display in the core [10,11].  Under venous conditions, 

antagonism of fibrin polymerization with the inhibitor gly-pro-arg-pro (GPRP) or blockade 

of g’-fibrinogen with an antibody leads to larger clots [11].  Consistent with thrombin 

localization in the clot core, the core is the location where interstitial permeation is 

expected to be less due to the lower porosity following contraction [12].    

In prior studies using thrombin-antithrombin (TAT) immunoassay on blood flowing 

over a procoagulant surface [13], little TAT was detectable in the effluent unless fibrin 

polymerization was blocked with GPRP.  Fibrin efficiently captured over 85% of the locally 

generated thrombin. For flow over a TF surface with fibrin polymerization blocked, the 

thrombin wall flux increased linearly with time to ~0.5 x 10-12 nmol/µm2-sec over the first 
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500 sec of clotting.  The thrombin flux then increased by a factor of 3-fold by 800 sec of 

clotting, an increase blocked by anti-Factor XIa antibody (O1A6).   

Importantly, the g’-fibrinogen slice variant represents ~6-8% of the total g-chains 

(or equivalently, the gA/g’ heterodimer represents ~12 to 16% of the total fibrinogen) 

[14,15].  Fibrin presents the weak sites in the E-domain for thrombin exosite 1 (~1.6-1.8 

sites/monomer, Kd~2-4 µM) and a high affinity site that targets thrombin exosite 2 via the 

highly anionic and tyrosine-sulfated g’-chain sequence (~0.2-0.4 sites/monomer, Kd~0.1-

0.4 µM) [16–18]. Despite the measurement of a moderate submicromolar affinity of the g’-

chain of fibrin for thrombin, the binding may actually be much tighter as indicated by fibrin’s 

tight capture of endogeneous by generated thrombin [13] and exogenously added 

thrombin [18].  In fact, the binding by thick fibers of fibrin has been described as irreversible 

and unsuited for Scatchard analysis [19] with steric capture/entrapment implicated. 

Beyond measuring thrombin production by TAT assay in the presence of GPRP, 

thrombin generation can also be followed via the release of prothrombin fragment 1.2 

(F1.2). F1.2 can be detected in the clot effluent even in the presence of fibrin generation. 

In contrast to thrombin generation, few if any quantitative measurements have been made 

of fibrin content of clots formed under flow. Fluorescent fibrinogen or fluorescent anti-fibrin 

antibody can be added to blood to follow the dynamics of intrathrombus fibrin generation. 

However, fluorescence is difficult to calibrate and can include platelet binding of 

fibrin(ogen).  As an endpoint measurement, a clot formed on a procoagulant surface can 

be rinsed with buffer, subjected to plasmin and then assayed by D-dimer immunoassay to 

give a quantitative measure of intraclot fibrin. 

Since g’-fibrin can capture thrombin, an improved understanding of clot growth 

requires direct measurement of the co-regulation of local thrombin and fibrin dynamics. 

For clotting under flow, platelet densities are 50-200X greater than platelet rich plasma 
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(PRP) [4,20]. Additionally, considerable effort has been directed at computer simulation of 

tissue-factor driven thrombin generation in tube reactions [21,22] or under flow [23–25].  

To our knowledge, this is the first simultaneous measurement of the rate and quantity of 

thrombin and fibrin generated within a clot formed under venous flow.   

 

2.1.2 Materials and methods 

Materials 

The following reagents were obtained: Anti-human CD61 (BD Biosciences, San 

Jose, CA), Alexa Fluor®647 conjugated human fibrinogen (Life Technologies, Grand 

Island, NY), Collagen Type I Chrono-ParTM aggregation reagent (Chrono-log, Havertown, 

PA), corn trypsin inhibitor (CTI, Haematologic Technologies, Essex Junction, VT), Phe-

Pro-Arg-chloromethylketone (PPACK; Hematologic Technologies, Essex Junction, VT), 

Dade® Innovin® PT reagent (Siemens, Malvern, PA), Enzygnost® F1+2 monoclonal kit 

(Siemens Healthcare Diagnostic, Tarrytown, NY), D-dimer ELISA kit (Abcam, Cambridge, 

MA), Human Fibrinopeptide A (FPA) ELISA Kit (MyBioSource, San Diego, CA), 

ethylenediaminetetraacetic acid (EDTA, Sigma, St. Louis, MO), H-Gly-Pro-Arg-Pro-OH 

(GPRP, EMD Chemicals, San Diego, CA), Fluorescein Phe-Pro-Arg-chloromethylketone 

(fluorescein-PPACK; Hematologic Technologies, Essex Junction, VT), Sigmacote® 

siliconizing reagent (Sigma, St. Louis, MO), and Sylgard® 184 Silicone Elastomer kit (Dow 

Corning, Auburn, MI). O1A6 FXI antibody was a gift from Dr. Andras Gruber (Department 

of Biomedical Engineering, Oregon Health and Science University).  

 

PDMS patterning and flow device 

Polydimethylsiloxane (PDMS) devices were fabricated as previously described 

[13,26].  Devices with a single long channel (250 μm in width, 60 μm in height) were used 
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to pattern protein onto glass slides. Multi-channel flow chambers were employed for 

microfluidic thrombosis assay. Each of these devices has 8 individual flow channels (250 

μm in width and 60 μm in height) that are diverging from a single inlet and converging into 

a common outlet where blood sample was collected. PDMS devices can be reversibly 

fixed to glass slides through vacuum bonding. Glass slides were rinsed with ethanol, dried 

with filtered compressed air before being treated with Sigmacote® in order to prevent 

surface triggered blood clotting. Collagen type I (1 mg/mL, 5 μL) was perfused through the 

main channel on the single channel device to generate a patch (250 μm in length) of 

aligned collagen fibers on glass slides, followed by bovine serum albumin (0.5% BSA in 

Hepes Buffered Saline, 5 μL). To add lipidated TF vesicles onto patterned collagen, Dade 

Innovin® PT reagent (23 nM) was subsequently perfused through the channel [27]. After 

30 min of incubation, excessive collagen or vesicles were washed with a final BSA rinse 

(20 μL). TF surface densities were about ~1 TF molecule/μm2, based on prior calibration 

using fluorescent imaging of FITC-annexin V stained vesicles [13,27].  

 

Blood collection and sample preparation 

All donors were healthy individuals who provided consent under approval of 

University of Pennsylvania Institutional Review Board and were self-reported free of any 

medication or alcohol for at least 72 hr prior to blood donation.  Blood was collected via 

venipuncture into syringes containing high dosage of CTI (40 μg/mL) to prevent contact 

activation and was subsequently labelled with CD61 antibody (2% by vol.) and fluorescent 

fibrinogen (1.3 % by vol.) for platelet and fibrin epifluorescence detection, respectively. 

When needed, GPRP (5 mM) was added to blood sample to block fibrin polymerization.  

In some experiments, fluorescein-PPACK was added to label the thrombin active site. 
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Microfluidic thrombosis assay 

The multichannel flow chamber was vacuum bonded on glasses slides over the 

patterned TF bearing collagen patches. The flow channels run perpendicularly to the 

collagen/TF patches and were primed and incubated with BSA buffer for at least 30 min 

prior to experiments to block nonspecific protein adsorption during blood perfusion. 

Labeled whole blood was transferred to BD 1-mL plastic syringes (Becton Dickson, 

Franklin Lakes, NJ) which were the then mounted on a PHD 2000 syringe pump (Harvard 

Apparatus, Holliston, MA). All flow experiments were initiated within 10 min after 

phlebotomy to avoid contact activation due to prolonged blood-surface contact even in the 

presence of high dosage of CTI. Blood was infused into the flow device at a constant flow 

rate of 16 μL/min (2 µL/min per channel) which corresponds to an initial wall shear rate of 

200 s-1 in each channel. Platelet aggregation and fibrin formation were simultaneously 

monitored and captured with a fluorescence microscope (IX81, Olympus America Inc., 

Center Valley, PA) equipped with a CCD camera (Hamamasu, Bridgewater, NJ).  

 

F1.2, TAT, D-dimer, and FPA immunoassay 

The effluent of the flow device was collected for various immunoassays (Figure 

2-1). For F1.2 and FPA ELISA, the effluent was treated with 10 μL of quenching buffer 

containing EDTA (0.5 mM) and PPACK (100 µM). Calcium-dependent thrombin 

generation was immediately quenched by EDTA and calcium-independent fibrinogen 

cleavage by thrombin was quenched with PPACK.  A blood sample was collected from 

the outlet every 3 min into individual centrifuge tubes. For TAT assay, the sample was 

quenched only with EDTA to prevent further thrombin generation but to allow active 

thrombin to complex with antithrombin. Collected blood samples were centrifuged at 1500 

g for 15 min to isolate platelet poor plasma for ELISA.  Background levels were determined 
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by analyzing the plasma sample isolated from blood that was quenched with 

EDTA/PPACK buffer immediately after phlebotomy. For each mole of generated thrombin, 

one mole of F1.2 is released from converted prothrombin. Thus, the measured average 

F1.2 concentration (𝐶!̅".$) within each time interval between sample collections can be 

converted to an average thrombin flux (𝚥)̅ using the following equation, where Q is flow 

rate (16 μL/min) and A is total thrombotic area: 

                                          �̅� = 	 𝑪
"𝑭𝟏.𝟐𝑸
𝑨

                                                      Equation 2-1 
 

For the fibrin endpoint determination after 800 sec of clotting, whole blood 

perfusion was replaced with a HEPES-buffered saline (HBS) rinse and then subjected to 

high dose plasmin digestion (800 µg/mL for 15 min) followed by digest collection and D-

dimer ELISA.  Each D-dimer detected was considered equivalent to a single fibrin 

monomer presenting two D-domains.   
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Figure 2-1. Experimental protocol for collecting effluent 
Experimental protocol to perfuse whole blood over discrete 250-µm long collagen/tissue factor 
surfaces while measuring dynamic platelet and fibrin accumulation by fluorescence microscopy 
and detecting F1.2 and thrombin-antithrombin complex (TAT) in the effluent using immunoassays 
(A).  In some experiments, the clot was rinsed in situ and subjected to plasmin digestion to release 
D-dimer for subsequent immunoassay (B). 

 

2.1.3 Results 

Intrathrombus thrombin is captured by fibrin via the g’ fibrin(ogen) variant 

Human blood was collected in high concentration of FXIIa-inhibitor CTI (40 μg/mL) 

and immediately perfused over collagen/TF to allow 2-color imaging of platelet and fibrin 

fluorescence dynamics and collection of effluent samples for assay of TAT, F1.2 (Figure 

2-1A) or end-point collection of plasmin-lyzed fibrin for D-dimer assay (Figure 2-1B).  

Under venous wall shear rate of 200 s-1, platelets and fibrin intensely accumulated on the 

collagen/TF patch with dense platelet aggregates surrounded by dense fibrin (Figure 2-2). 

Addition of a low concentration of fluorescein-PPACK (600 nM) did not block fibrin 

deposition and allowed the detection of the thrombin active site which was highly co-

localized with the fibrin (Figure 2-2, top row), but considerably less so with platelets. 

Inclusion of 5 mM GPRP to the assay had little effect on platelet deposition, but ablated 
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fibrin polymerization and ablated the detection of the thrombin active site with fluorescein-

PPACK (Figure 2-2, middle row), indicating that capture of tightly-bound thrombin within 

the clot required fibrin. This result was exactly consistent with the inability to detect TAT 

in the effluent unless GPRP was present [13].  Inclusion of anti-g’-fibrinogen antibody had 

a slight effect on fibrin morphology and completely ablated the detection of the thrombin 

active site with fluorescein-PPACK (Figure 2-2, bottom row), demonstrating that 

intrathrombus thrombin was captured and localized by g’-fibrin(ogen).   
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Figure 2-2. Intrathrombus thrombin is captured by fibrin via the γ‘ fibrin(ogen) variant 
Accumulation of fluorescent platelets and fibrin(ogen) on collagen/tissue factor in the presence of 
low dose fluorescein-PPACK to stain for the thrombin active site under control conditions (top row) 
or GPRP to block fibrin (middle row) or anti-g‘-fibrinogen antibody (bottom row). 
 

In a separate experimental design, clots were allowed to form (CTI-whole blood 

over collagen/TF) for 2 min at 200 s-1.  Then, fluorescein-PPACK buffer was added for 2 

min to label the thrombin active site followed by a 7-min high shear buffer wash at 1000  

s-1.  Again, the thrombin-active site detected with fluorescein-PPACK was: (1) strongly 

stained in the clot, (2) highly co-localized with fibrin, (3) largely absent on platelet masses, 
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and (4) highly resistant to high shear rate wash out over a 7-min time frame (Figure 2-3), 

all consistent with nearly irreversible binding of thrombin by fibrin [13,18,19]. 

 

 

Figure 2-3. High shear rate washout of fluorescein-PPACK stained fibrin over 7 minutes 
Washout experiment of fluorescein-PPACK labeled thrombin (A). Clots were formed for 2 min, 
stained with fluorescein-PPACK for 1 min, and then buffer washed for 10 min (B) to follow the 
elution of thrombin from the clot (C). Results are expressed as mean ± SD (n=6). All the values are 
significantly different from zero (p<0.001) demonstrating essentially no washout of thrombin. 
 

Thrombin production rates in fibrin rich clots 

To measure thrombin production by whole blood clotting on collagen/TF while fibrin 

was polymerizing (no GPRP), F1.2 was measured in the clot effluent.  The concentration 

of F1.2 increased linearly with time, for the first 500 sec to a thrombin flux value of ~0.5 x 

10-12 nmole thrombin/µm2-sec, essentially identical to the thrombin flux determined with 

TAT assay with GPRP present (Figure 2-4A).  The amount of F1.2 generated was 

considerably greater in the presence of GPRP, especially at later times of 400 to 800 sec 
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where FXIa activity is considered an important contributor to thrombin production in part 

through a platelet polyphosphate dependent mechanism [13,27]. The increased F1.2 

generation in the presence of GPRP was expected since thrombin would not be 

susceptible to g’-fibrin sequestration.  The late stage role of FXIa on F1.2 generation was 

shown at the later times between 400-800 sec through the function blocking antibody 

O1A6 to inhibit FXIa (Figure 2-4B).  The amount of F1.2 made in the presence of GPRP 

was ~30-50% greater than the amount of TAT detected in the presence of GPRP (Figure 

2-4A), which was expected since some of the thrombin released from the clot might be 

inhibited by C1 inhibitor or a2-macroglobulin instead of antithrombin.   In a control 

experiment all the F1.2 detected in the effluent was dependent on the TF in the collagen 

coating since blank chambers lacking collagen/TF produced essentially undetectable 

levels of F1.2 (regardless of presence or absence of GPRP), also indicating that high dose 

CTI quenches FXIIa in the inlet reservoir and flow channels of the microfluidic device 

(Supplemental Figure II). 
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Figure 2-4. The dynamics of thrombin flux and fibrin concentration 
Comparison of F1.2 and TAT generation by whole blood clotting under venous flow conditions in 
the presence or absence of GPRP (A) or anti-FXIa antibody O1A6 (B).  Alternatively, clots were 
formed with fluorescent fibrinogen tracer and then subjected to endpoint plasmin-digest for assay 
of D-dimer (C). FPA generation was measured from 0 to 800 sec. The result from independently 
measured D-dimer assay (dark line) was compared with assuming 1 FPA/fibrin monomer (dark 
dashed line), and 2 FPA/fibrin monomer (gray dashed line) (D). Results are expressed as mean ± 
SD. 

 

Intrathrombus fibrin can reach levels 10-fold greater than plasma fibrinogen 

concentration 

During the perfusion of whole blood over collagen/TF, the accumulation of fibrin 

can be followed dynamically with time using fluorescent fibrinogen (Figure 2-4C).  At the 

end of the 800 sec experiment, the clot was rinsed and subjected to plasmin degradation 

to release D-dimer for immunoassay.  This 800-sec endpoint measurement allowed the 

determination of the final fibrin concentration in the clot to be determined to be 30 ± 15 

mg/mL (~ 90 µM fibrin; ~10-15 µM g’-fibrin chains) in the pore space of the clot. This fibrin 
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concentration depends on several prior known constraints such as the fibrin existing only 

in the pore space of a platelet mass with porosity of ~0.5 and the core region having a 

thickness of 15 µm, as previously measured (Supplemental Figure II) [10,25,28].  

At 800 sec, the measured concentration of fibrin was 10-fold greater than typical 

average plasma fibrinogen concentration, indicating that fresh fibrinogen was entering the 

core of the clot where thrombin was generated. Using the endpoint measurement to 

calibrate the dynamic fluorescence signal obtained by microscopy of venous clotting on 

collagen/TF, the dynamic intrathrombus fibrin concentration in the pore space of the clot 

is given as (Figure 2-4C): 

[fibrin, mg/ml](t) = (-7.7x10-8) t3 + (1.15x10-4) t2 - (6.44x10-3) t , for t [=] 0 to 800 sec. 

Based on this calibration of the fluorescence signal, the concentration of fibrin 

generated at 500 sec due to TF was ~15 mg/mL. This post-lysis D-dimer estimate of the 

clot fibrin includes incorporated fibrinogen that can stably incorporate into D-dimer (even 

without FXIIIa crosslinking) and assumes that fibrin monomers do not escape from the clot 

core due to their incorporation into fibrin. FXIIIa crosslinking is expected to be substantial 

by the end of the 800 sec experiment.  For fibrin at a density of 15 mg/mL, the calculated 

fibrin porosity is efibrin = 0.95, based on a fibrin fiber density of 280 mg-fibrin/mL-fiber[29].. 

In Figure 2-4C, the variability in dynamic fibrin fluorescence across 10 healthy 

human donors was about ± 50% CV, which was greater than the 8% CV of the D-dimer 

Elisa and the intrachip clotting/flowrate/sampling error of ~15% CV. The D-dimer endpoint 

assay was used to calibrate the average dynamic fibrin fluorescence (Figure 2-4C-D) 

since the two signals were highly correlated in individual donor measurements 

(R2=0.9592).  Similar to the magnitude of the interdonor variability of the fibrin 

fluorescence signal, the interdonor variability of the D-dimer endpoint assay was about ± 

40% CV (Figure 2-4C-D). 
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In a separate control experiment using fibrinopeptide A (FPA) Elisa to corroborate 

the D-dimer endpoint data, we measured the dynamics of FPA generation from 0 to 800 

sec.  Assuming 1 FPA/fibrin monomer, the FPA assay was calculated to produce slightly 

less fibrin than indicated by the independently measured D-dimer assay, albeit within the 

interdonor variation of the measurements (Figure 2-4D).  Assuming 2 FPA/fibrin monomer 

(dashed line), the FPA assay predicted only about a third as much fibrin as the D-dimer 

endpoint assay. The difference between the FPA assay and D-dimer assay might be 

explained by (1) different donors used for each assay and/or (2) the incorporation into the 

fibrin of fibrinogen, single-cleavage des(A)-fibrin monomer, or even small amounts of 

des(B)-fibrin monomer. 

 

Intrathrombus fibrin/thrombin ratio demonstrates thrombin has a short half-life < 

100 msec. 

By measuring the thrombin flux with time (Figure 2-4A) with F1.2 assay as fibrin 

is made dynamically (Figure 2-4C), it is possible to determine the total amount of thrombin 

and fibrin made during the assay.  By 500 sec before the contact pathway engages, a total 

of 92000 molecules of thrombin and 203,000 molecules of fibrin were generated per single 

molecule of TF (or per µm2 of surface area).  By TAT assay, it is estimated that 15% of 

the thrombin can escape the clot as detectable TAT and that most (~ 70%) of this escaping 

thrombin complexes with antithrombin with 30% captured by other inhibitors and 

undetected by TAT assay.  Assuming that all fibrin monomers are captured within the fibrin 

of the clot, the ratio of intrathrombus fibrin to thrombin was remarkably low. There were 

only ~3 fibrin monomer equivalents generated per thrombin molecule. Regarding FPA 

generation, the overall rate R is given as R= kcat * [(So/(So+Km)] where So = aA-chains = 

2[fibrinogen].  For kcat = 77 s-1 and Km = 5.7 µM [30] or kcat =84 s-1 and Km = 7.2 µM [31], 
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the overall rate is R = 60 FPA per thrombin per sec. For this rate of generation of desA-

fibrin monomer by thrombin mediated release of fibrinopeptide A (FPA) of 60 FPA per 

thrombin per sec [30,31], the average lifetime (tavg) of thrombin in the thrombus can be 

estimated to be tavg ~ 100 msec by: 

[72,300 thrombin] * (60 FPA/thrombin-sec) * (tavg)  = 203,000 fibrin monomers * (2 

FPA/monomer) 

For a half-life t1/2 ~ 0.693 (tavg), the half-life of thrombin in a clot with fibrin is t1/2 ~ 

70 msec, considerably shorter than the protein diffusional escape time of ~ 5-10 sec as 

calculated by simulation [32] or measured with flash-activated albumin in clots [33].  The 

short half-life of 70 msec is fully consistent with typical association rates of proteins with 

each other and the observation that almost all of the thrombin is captured by fibrin with 

minimal elution out of the clot [13].    

 

Calculation of free thrombin within the clot assuming equilibrium with fibrin 

Based upon F1.2, TAT, and D-dimer assay, the concentrations within the core pore 

space of the clot at 500 sec were estimated to be 15 µM thrombin and 45 µM fibrin (Figure 

2-5).  Both these intrathrombus concentrations were considerably greater than the plasma 

concentration of prothrombin (1.4 µM) and fibrinogen (9 µM).  From the TAT assay, 

intraclot fibrin displayed ample capacity to bind substantial amounts of endogeneously 

generated thrombin.  Based upon equilibrium of 15 µM thrombin with 45 µM fibrin that 

presents 72 µM weak sites and 13.5 µM strong sites (following [18]), we calculated that 

the free concentration of thrombin within the clot core was on the order of 100-200 nM 

(~10-20 U/mL) for a g’-site Kd of ~0.2 µM.   

However, the value of Kd for endogeneously generated thrombin incorporated into 

endogenously generated fibrin may be different from values obtained with exogenously 
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added thrombin and may depend on the exact concentration and polymerization 

conditions of thrombin and fibrin used in the measurement.  The lack of washout of 

fluorescein-PPACK stained fibrin over 7 minutes (Figure 2-3) was indicative of a very slow 

off-rate. Given the lack of measurements on extremely high density intrathrombus fibrin, 

we explored computationally (see Supplemental Methods) a range of Kd values for the 

g’-site, assuming the weak site in the E-domain was between 1 and 5 µM (Figure 2-6). 

Free intrathrombus thrombin concentrations were calculated to range from about 20 to 

200 nM under conditions of tighter binding (g’-site Kd ~1 to 50 nM).  These estimates do 

not include binding of free thrombin to platelet GPIba (Kd~100 nM) or consumption by 

fibrin-linked a2-macroglobulin or a1-antitrypsin [34]. 

 

 

Figure 2-5. Transient mass balance for production in the thrombus core over 500 sec 
Transient mass balance for production in the thrombus core (15 µm thick, porosity~0.5) of thrombin 
and fibrin over 500 sec of venous thrombosis on collagen/tissue factor.  Over 500 sec, the copy 
number [blue] per unit area of 1-µm2 (at 1 TF/µm2) in a pore volume of 7.5 µm3 was calculated for 
total thrombin generation (based upon F1.2 assay), amount of thrombin escape in the presence of 
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fibrin (based upon TAT assay), deposited fibrin (based upon D-dimer assay), and active 
prothrombinase (based upon known kinetic constants). 

 

 

Figure 2-6. Calculation of free thrombin within the clot assuming equilibrium 
Calculation of free thrombin within the pore volume of the thrombus core at 500 sec based upon a 
total thrombin concentration of 15 μM and total fibrin concentration of 45 μM.  The free thrombin 
concentration is shown for weak sites (E-domain) only with Kd of 2.8, 5 μM (dotted lines) or for 
weak sites in combination with the g’-site with the g’-Kd varied from 1 to 200 nM (solid lines for weak 
Kd of 1 μM (circle), 2.8 μM (triangle), or 5 μM (square).  The weak and g’-site concentrations were 
calculated to be 72 μM and 13.5 μM, respectively, following [18]. 

 

Using known kinetic constants [35], we calculated that ~15 molecules of active 

prothrombinase (Xa/Va) per μm2 were produced over the first 500 seconds of clotting in 

order to generate 92000 molecules of thrombin (See Supplement Method).  For a core 

height of δ=15 µm and porosity ε=0.5, the platelet volume of the core (7.5 µm3) over 1 µm2 

contains approximately the equivalent volume of a single platelet (~10 µm3).  By 500 sec, 

there were ~15 active prothrombinase complexes per platelet.  Based on the half-lives of 
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FXa and prothrombinase, it is likely that ~102 molecules of Xa, Xa/Va, inhibited-Xa, and 

inhibited-Xa/Va were made per platelet over the 500 sec distal of 1 molecule of TF.  

Interestingly, the effective concentration of 1 molecule of TF per 7.5 µm3 pore volume in 

the core corresponds to a relatively high TF concentration of 220 pM.  

 

2.1.4 Discussion 

Blood clotting on a procoagulant surface under flow involves hundreds of reactions 

within activating platelets and the coagulating plasma.  The autocatalytic nature of 

coagulation is remarkable, with a single molecule of TF found to generate 92,000 

molecules of thrombin over a 500-sec clotting window.  This generation of thrombin was 

first measured [13] using TAT assay in the absence of fibrin using GPRP.  We now confirm 

this measurement using F1.2 assay as a gold standard for the first measurement of 

thrombin generation in the presence of fibrin polymerization under flow conditions.  

Clearly, fresh prothrombin can enter the clot. Using the D-dimer assay, the first 

measurement of intrathrombus fibrin concentration revealed that fresh fibrinogen 

substrate can also continually enter the clot and be converted to fibrin monomer and 

incorporated into fibrin. While the binding of thrombin into fibrin has been studied in the 

literature[36], the conditions of a thrombus formed under flow are unique relative to those 

found in a tube of clotting blood or plasma.  Clearly g’-fibrin can bind endogeneously 

produced thrombin to a significant extent (Figure 2-2 and Figure 2-3).  The intrathrombus 

concentration of fibrin is quite high (5-10X), relative to fibrinogen levels in plasma.  While 

fibrin bound thrombin is active against small peptide substrates and protected against 

antithrombin, fibrin-bound thrombin has relatively little activity against fibrinogen (see 

[37,38] showing only ~1-10% conversion of fibrinogen over 30 min by fibrin-bound 

thrombin). Clot-bound thrombin may also have some potential role in wound healing. 
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Unique to a thrombus formed under flow, free thrombin was predicted to have a very short 

half-life due to fibrin binding and a low fibrin generating yield of only a few fibrin monomers 

per thrombin molecule.  Prior computer simulations of TF-activated PRP clotting in a tube 

have considered combined production of thrombin and fibrin [22]. However, most flow 

simulations predict thrombin to elute from the clot followed by a slower inhibition by 

antithrombin [23–25] with little consideration of g’-fibrin binding of thrombin. In this flow 

assay, the addition of high dose heparin (4 units/mL) was found to ablate fibrin formation, 

indicating that the FXa-ATIII, FXa/Va-ATIII, and thrombin-ATIII reactions can be catalyzed 

to out-compete fibrin monomer generation by thrombin. For example, heparin is known to 

accelerate ATIII inhibition of thrombin by >1000-fold [39] and FXa/Va by 4800-fold [40]. 

The data presented in Figure 2-4 should allow improved validation of simulations that 

seek to predict dynamic concentrations of prothrombinase (FXa/FVa), intrathrombus 

thrombin, and fibrin polymerization, as well as FXIa-mediated pathways that occur 

between 500 and 800 sec of clotting. 

In this transient mass balance, we sought to account for all the thrombin molecules 

and fibrin monomers that are generated on a surface over time.  It is a transient mass 

balance because the system is never at steady state (eg. the thrombin flux increases with 

time in Figure 2-4A).  We used various proxies including TAT, F1.2, FPA, and D-dimer to 

obtain a  consistent view that: (1) F1.2 and FPA leave the clot even when fibrin is made, 

(2) almost all the thrombin in the clot is captured by the deposited fibrin via tight binding 

with g’-fibrin, and (3) thrombin is short lived within the clot due to the antithrombin-I activity 

of fibrin. While the role of g’-fibrinogen in arterial thrombosis is less established, it is 

increasingly clear that low levels of g’-fibrinogen are a risk factor for venous thrombosis 

[41,42].  Using human blood, we have observed previously that g’-fibrin has an important 

role in limiting clot growth under venous flow conditions [11].  In future work on clotting 
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under venous and arterial flow conditions, the effects of low and high g’-fibrinogen levels 

on thrombin production, fibrin production, fibrin/thrombin ratio, and clot growth rate may 

prove clinically relevant, particularly in acute phase response states where g’-fibrinogen 

levels can change [3]. 
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2.2 Reduced model to predict thrombin and fibrin generation during thrombosis 
on collagen/tissue factor under venous flow: Roles of g’-Fibrin and Factor XI 

2.2.1 Introduction 

The reaction network and kinetics of human blood clotting impact diseases such 

as coronary thrombosis, stroke, deep vein thrombosis, hemophilia, disseminated 

intravascular coagulopathy (DIC), and traumatic bleeding. Numerous therapeutics are 

designed to either inhibit or catalyze reactions of the coagulation cascade. Despite 

decades of study, new reaction modulators (eg. platelet polyphoshate [43] and reaction 

pathways (eg. direct conversion of FVIIIa by TF/FVIIa/Xa [44]) are still being discovered.  

In some cases, the significance of a particular reaction studied in a purified system may 

be difficult to resolve since pM-levels of factors formed transiently in whole blood are 

challenging to measure directly. 

Excluding platelet metabolism other than the availability of anionic phospholipid, 

isotropic kinetic models of plasma coagulation in a closed system can include 50 to 100 

reactions, 1 to 3 kinetic rate coefficients per reaction, and about 10 initial conditions for 

zymogen or cofactor concentrations [21,22,45].  Fortunately, these large ODE models can 

be parameterized and solved with minor computational expense.  In these models, a 

trigger at t=0 is required such as 1 to 10 pM tissue factor (TF) along with 1% of FVII being 

in a cleaved yet zymogen-like state as free FVIIa.  Alternatively, if no TF is present, a 

source term for FXIIa generation or non-zero levels of cleaved factors is required to drive 

clotting [22]. In closed systems, the concentration of substrates and products can undergo 

>103-fold changes as clotting proceeds non-linearly through initiation, 

propagation/amplification, and exhaustion (inhibition and substrate consumption). 

Calibrated automated thrombinography (CAT) assay reports these dynamics for platelet-

poor or platelet-rich plasma with typical time lags of 3.1 and 8.1 min, peak thrombin levels 

of 458 and 118  nM at 10 min, and reaction completion by 25 min [46].   
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As clotting progresses, the extrinsic tenase/IXase (TF/FVIIa) converts FX to FXa 

and FIX to FIXa. Along with conversion of activated cofactors FVIIIa and FVa, the intrinsic 

tenase (FIXa/FVIIIa) dramatically amplifies production of FXa, while prothrombinase 

(FXa/FVa) generates thrombin (releasing fragment F1.2).  Thrombin cleaves platelet PAR-

1 and PAR-4 and converts fibrinogen to fibrin monomer by release of fibrinopeptides A 

and B (FPA/B).  The reaction of thrombin and antithrombin to form thrombin-antithrombin 

(TAT) is relatively slow (~1 min) unless catalyzed by heparin. Fibrin monomers associate 

into protofibrils that laterally aggregate into bundles. Thrombin also activates FXIIIa, a 

transglutaminase that crosslinks fibrin. Plasmin-mediated fibrinolysis of crosslinked fibrin 

releases various fibrin degradation products (FDP) including D-dimer.  These reactions 

can be studied in closed systems, ± fluid mixing and ± spatial gradients. To mimic 

thrombosis at a specific wall location (an open system), blood treated with the FXIIa 

inhibitor corn trypsin inhibitor (CTI) can be perfused over a defined thrombotic surface 

containing TF. Clotting on a surface under flow includes mathematically complex physical 

phenomenon such as platelet margination to the wall [47], convective/diffusive transport, 

concentration boundary layers, pressure-driven permeation, and moving boundaries 

[20,48]. Solving large sets of partial differential equations (PDEs) for coagulation species 

transport and reaction is expensive and non-trivial [49].  Generally, enzyme-substrate 

interactions at the single molecule level are considered unaffected by macroscopic flow 

forces. 

Fibrin has ‘antithrombin-I activity’ via thrombin binding to the low affinity site in the 

E domain and the high affinity site in the D-domain of the alternative splice variant, g’-

fibrin(ogen). The g’-fibrinogen splice variant represents about 6-8% of total g-chains, with 

gA/g’ heterodimer representing 12-16% of total fibrinogen [1]. γ′ fibrinogen level is 

associated with cardiovascular disease .[2].  During thrombosis under flow, thrombin co-
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localizes on fibrin [50,51]. A recent observation is that little thrombin (detected as TAT) 

leaks out of a growing clot unless fibrin polymerization is inhibited with Gly-Pro-Arg-Pro 

(GPRP) [52].  By immunoassays for TAT and F1.2 (± fibrin inhibitor, GPRP) and D-dimer 

(post-plasmin treatment), the dynamics of thrombin and fibrin generation have only 

recently been measured for flow of human whole blood over defined collagen/TF surfaces 

[50]. 

To our knowledge, no model has calculated intrathrombus thrombin generation 

and fibrin polymerization under flow conditions where fibrin is being formed dynamically 

and local thrombin is reversibly binding fibrin through the weak (E-domain) and strong 

binding sites (g’-variant). We present a reduced model where key assumptions are 

supported by direct experiment measurements.  This reduced model deploys a thin film 

assumption for the clot core (thickness ~ 15 microns) where zymogen levels in the clot 

are set to be identical to those in the flowing plasma. This assumption did not hold for 

fibrinogen transport, which is not surprising given that fibrinogen (340 kDa) is considerably 

larger than the other coagulation factors.  For a set of prevailing plasma concentrations 

for Factors FVIIa, FIX, FX, FXI, prothrombin, fibrinogen as well as initial surface [TF]o, the 

reduced model makes quantitatively accurate predictions of thrombin and fibrin levels 

under venous flow conditions. Fibrin appears to allow for explosive but feedback-inhibited 

production of thrombin.  After a clotting episode, the large amount of fibrin-bound thrombin 

was predicted to take a few hours to elute into the circulation to form TAT. This reduced 

model may be particularly useful for multiscale simulations of thrombosis over vessel 

length scales of mm to cm. 
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2.2.2 Methods 

A reduced kinetic model of coagulation under flow was formulated to include 

extrinsic tenase/FIXase activity, intrinsic tenase activity, prothrombinase activity, feedback 

activation of FXIa by thrombin, fibrin generation, and thrombin binding to fibrin(Figure 2-7) 

using measured Michaelis-Menton kinetic parameters (Table 2-1). The reduced model 

employs various physical and biochemical features of clotting under flow that are 

supported by experimental measurement:  
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Table 2-1. Reactions and kinetic parameters used in the ODEs model. 
Simplified clotting reactions neglecting limits in activated cofactor generation, plasma 
zymogen concentrations, and kinetic parameters of coagulation where η is the 
effectiveness factor (actual rate with transport limits/theoretical maximum rate).  For each 
reaction, ao = kcat [S]o/(Km+[S]o).  Reversible binding of thrombin to the weak and strong 
site in fibrin was treated as kinetically-controlled, reversible adsorption. 

 

# Reactions Enzyme [S]0 
kcat 

(s-1) 

Km 

(µM) 

α 

(s-1) 
η Ref. 

1 X
!"∗
&' Xa TF/VIIa X0=0.17 µM 1.15 0.24 0.46 1 [35] 

2 IX
!"∗
&' IXa TF/VIIa IX0=0.09 µM 1.8 0.42 0.32 1 [22] 

3 
X
#$%
&' Xa IXa/VIIIa X0=0.17 µM 8.2 0.08

2 5.42 1 [22] 

4 
II
$%
→ IIa Xa/Va II0=1.4 µM 30 0.3 24.7 0.

18 
[22,35,5
3] 

5 α − fbg
##%
&' desA

− Fn1 + FPA 
IIa α-fbg0=18 µM 80 6.5 5.88 0.

05 [22,54] 

6 
XI

##%
&' XIa IIa/p* XI0=31 nM 1.3x1

0-4 0.05 4.98x10-5 0.
36 [22] 

7 IX
$#%
&' IXa XIa/p* IX0=0.09 µM 0.21 0.2 0.065 1 [22,36] 

 
thrombin binding to fibrin 

Kd 

(µM) 

kf 

(µM-
1s-1) 

kf 

(s-1) 
  

1 IIa + E	site
	
↔ IIa ∙ E	site 2.8 100 280  [18] 

2 IIa + γ	site
	
↔ IIa ∙ γ	site 0.1 100 10  [18] 
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Figure 2-7. Schematic of the simplified ODEs model.  
The concentration of active TF* is defined as TF/FVIIa which is homogenized over the porous core 
volume Vpore (A).  All zymogens were assumed to enter the clot core by diffusion to maintain their 
plasma level [S]o. All active enzymes had a 1-minute half-life, with TF* set to 3 min (since FVIIa 
generation was ignored).  Free thrombin and FXIa eluted by diffusion from the core with a 2-sec 
half-life. The thrombin core thickness was set to 15-µm, with 50% of platelets by vol. Only the 
activated proteases are shown for simplicity. 

 

Core thickness. The porosity used in the model is an estimate of the spatially 

averaged porosity over the entire 250 um x 250 um clotting region of the microfluidic 

assay, recognizing that this averages over both platelet/fibrin dense regions surrounded 

by fibrin dense regions. It is expected that the lower porosity decreases the effective 

diffusion of thrombin.  
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Substrate delivery.  Substrate concentrations in the clot core are considered to 

be constant at plasma levels (So). Thus, the Michaelis-Menton reactions to generate 

product [P] become linearized with respect to [E, enzyme] as dP/dt = [kcat (So/(Km+So))] • 

E(t) = α• [E(t)] (Table 2-1).  For species without diffusion limitations, the effectiveness 

factor ƞ = 1 (actual rate/ideal rate without diffusion limits).  If a species experience 

transport limits, then ƞ < 1 and dP/dt = ƞ • α• [E(t)].  This approach is supported by direct 

measurements of TAT, F1.2, FPA, and D-dimer that indicate local clot associated product 

levels (thrombin and fibrin) are in excess of plasma levels (prothrombin and fibrinogen) 

demonstrating continual substrate delivery into the core of the clot [50]. 

Product escape from the clot core. Just as substrates can enter the core, free 

thrombin and FXIa were considered to escape the clot. The escape time was set to the 

measured half-life of 2 sec for albumin within the clot core [55] where kelute = ln(2)/2 sec. 

This half-life in the thin-film for product escape = kelute • [E] is conceptually and 

mathematically similar to the use of a mass transfer coefficient kc with units of 1/time as 

defined in [23].   

Although the binding characteristics of F1.2 to fibrin are unknown, we hypothesize 

that the observation that fibrin suppresses F1.2 elution may be consistent with fibrin 

inhibiting the thrombin-feedback pathway involving FXIa which in turn results in less 

prothrombin conversion. The small Fragment F1.2 was considered to leak out of the clot 

core as fast as thrombin was generated in the core.  For TAT, 70% of the thrombin eluted 

from the clot was considered complexed with antithrombin with the remaining 30% of 

eluted thrombin complexed with other inhibitors [50].  Based upon all thrombin and F1.2 

begin generated in the pore space Vpore of the clot core (Figure 2-7A), the flux J-F1.2 and 

the flux J-TAT leaving the clot were calculated as: 
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Flux, J-F1.2(t)  =   ƞ4 • α4 [Xa(t)] (Vpore/area) = ƞ4 • α4 [Xa(t)] d              Eqn. 1 

 

Flux, J-TAT(t)  = 0.7 • kelute [IIa(t)] (Vpore/area) = 0.7 • kelute [IIa(t)] d      Eqn. 2 

 

Cofactors not rate limiting. For healthy non-hemophilic blood, the generation of 

cofactors (FVa, FVIIIa) was treated as non-rate limiting. Thus, the intrinsic tenase 

FIXa/FVIIIa = “FIXa”, and prothrombinase FXa/Va = “FXa”.The availability of FIXa and 

FXa (not FVa or FVIIIa) controlled the enzymatic cleavage of their substrates according 

to the reactions parameterized in Table 1.  

Initial surface concentration.  FVII and FVIIa in plasma were assumed to 

instantaneously equilibrate with surface TF such that [TF*] = TF/FVIIa = 1 % of [TF]0 where 

[TF]0 = 1 molecule/µm2 set experimentally.  No additional TF* was allowed to be generated 

in the model, equivalent to the quenching dynamics via platelet coverage invoked by 

Kuharsky and Fogelson. [23].   

Order of 1-minute enzyme half-lives.  The inhibition mechanisms of coagulation 

proteases via TFPI, ATIII, C1-inhibitor and a2-macroglobulin are complex and diverse and 

not fully resolved.  Inhibition was treated uniformly to be a pseudo-first order reaction.  

Enzyme half-lives were set to be on the order of 1-min for FXa, FIXa, FXIa, FIIa (and 3 

min for TF* since FVIIa generation was neglected).  In other words, inhibition was clearly 

not as rapid as 0.1 min and clearly not as slow as 10 min. Thus, ki = ln(2) /60s as a first 

approximation. 

Thrombin adsorption to fibrin.  Reversible thrombin binding to the weak E-

domain site (EKD= 2.8 µM) and the strong g’-site (gKD = 0.1 µM) was consider to have 

diffusion-limited association (kf = 100 µM-1 s-1).  Fibrin-bound thrombin was considered to 
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be fully resistant to inhibition. All fibrin monomer generated in the clot core was assumed 

to be fully incorporated into fibrin. 

 

The delivery of plasma zymogens and platelets to the surface of a growing clot 

would be even faster at arterial flow conditions, however the increased shear forces tend 

to enhance platelet removal. Unfortunately, it is difficult to measure eluted FPA, F1.2, or 

TAT under arterial conditions due to their 10-20X greater dilution in the exit flow stream 

compared to the venous measurement [52]. Importantly, arterial syndromes tend to be 

drugged with anti-platelet agents, not anticoagulants. 

For the reaction topology shown in Fig. 1, these assumptions result in a reduced 

clotting model with only 8 ODEs for 6 reactive species undergoing 7 reactions (Table 2-1) 

and 2 fibrin sites for reversible binding of thrombin. These 8 ODEs were solved in Matlab 

R2016b using the ODE sovler ode15s.  

  

ODE 1. !	#$∗

!%
= −𝑘&,#$ ∙ 𝑇𝐹∗		𝑓𝑜𝑟	𝑘&,#$ = ln	(2)/180𝑠 

ODE 2. !	)*
!%

= 𝛼+ ∙ 𝑇𝐹∗ + 𝛼, ∙ 𝐼𝑋𝑎 − 𝑘& ∙ 𝑋𝑎					  

ODE 3. !	-)*
!%

= 𝛼. ∙ 𝑇𝐹∗ + 𝛼/ ∙ 𝑋𝐼𝑎 − 𝑘& ∙ 𝐼𝑋𝑎        

ODE 4. !	)-*
!%

= 𝜂0 	 ∙ 	𝛼0 ∙ 𝐼𝐼𝑎 − 𝑘123%1 ∙ 𝑋𝐼𝑎	 − 𝑘& ∙ 𝑋𝐼𝑎			𝑓𝑜𝑟	𝜂0 = 0.23	 

ODE 5. !	$&45&6
!%

= 𝜂7 	 ∙ 	𝛼7 ∙ 𝐼𝐼𝑎					𝑓𝑜𝑟	𝜂7 = 0.05 

  where :   𝜃%8%*2	
	9 = (1.6) ∙ fibrin     and      𝜃%8%*2	

	: = (0.3) ∙ fibrin   
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ODE 6. !	--*
!%

= 𝜂; 	 ∙ 	𝛼; ∙ 𝑋𝑎 − D
!	 <	(

!%
+ !	 <	)

!%
E − 𝑘123%1 ∙ 𝐼𝐼𝑎	 − 𝑘& ∙ 𝐼𝐼𝑎				𝑓𝑜𝑟	𝜂; =

0.25 

ODE 7. !	 <	(

!%
= k=	9 ∙ 𝐼𝐼𝑎 ∙ ( 𝜃%8%*2	

9 − 𝑆	9 ) − k5	
9 ∙ 𝑆	9  

ODE 8. !	 <	)

!%
= k=	: ∙ 𝐼𝐼𝑎 ∙ ( 𝜃%8%*2	

: − 𝑆	: ) − k5	
: ∙ 𝑆	:  

 

This reduced model for blood clotting on a collagen/TF surface under flow uses 19 

parameters, only 3 of which were adjusted to fit the experimental data: 

 

7 kinetic coefficients (αi) based on measured kinetics and plasma zymogen levels (Table 

2-1) 

1 initial surface TF* level based on specified [TF]o=1 TF/µm2 and [FVIIa]/[FVII] = 0.01.   

3 binding parameters: EKD , gKD, kf  

2 known stoichiometric coefficients: 1.6 E-sites/monomer, 0.3 g’-sites/monomer 

1 elution rate: kelute = ln(2)/2s for free species of thrombin and FXIa  

2 inhibition rates: ki = ln(2)/60s for FXa, FIXa, FXIa, FIIa; ki,TF=ln(2)/180s for TF*   

3 effectiveness factors (𝜂(, 𝜂), 𝜂*) ≠ 1, adjusted to fit experimental data. 

 

Diffusion of thrombin from fibrin layer into a flow field 

For simulations of thrombin equilibrated to fibrin (no thrombin generation) followed 

by desorption-controlled elution of thrombin, a full PDE simulation was solved for a 2D 

rectangular domain (1000 µm long x 60 µm high) representing a channel of the microfluidic 

device [50].  At a location 150 µm downstream of the entrance, a porous fibrin reaction 
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zone (250-µm long x 15-µm high) was defined as the clot core, with fibrin concentration 

set by D-dimer ELISA experiment.  A thrombin flux was imposed along the bottom plate 

to allow thrombin diffusion through the fibrin (in the presence of two binding sites (1.6 Eq-

sites per fibrin monomer; 0.3 gq-sites per fibrin monomer) with binding kinetic parameters 

given Table 2-1. COMSOL was used to solve the convection-diffusion-reaction equation 

for thrombin transport in two steps. First, the Free and Porous Media Flow module was 

first solved with a Stationary study step to get the velocity field (𝑢). Second, the mass 

transport was solved by the Transport of Diluted Species in Porous Media (thrombin) 

coupled with General Form PDE for weak and tight thrombin binding was solved with a 

time-varying time-step, with a relative tolerance of 0.0001. 

 

The thrombin binding by fibrin was described by the following equations: 

𝜕𝐶++,
𝜕𝑡

= −∇ ∙ (−𝐷∇𝐶++,) − 𝑢 ∙ ∇𝐶++, − 	
𝜕 𝑆	𝐸

𝜕𝑡
−
𝜕 𝑆	𝛾

𝜕𝑡
 

𝜕 𝑆	𝐸

𝜕𝑡
= 𝑘-	/ ∙ 𝐶++,( 𝜃010,2	

/ − 𝑆	𝐸 ) − 𝑘3	
/ ∙ 𝑆	𝐸  

𝜕 𝑆	𝛾

𝜕𝑡
= 𝑘-	4 ∙ 𝐶++,3 𝜃010,2	

4 − 𝑆	𝛾 4 − 𝑘3	
4 ∙ 𝑆	𝛾  
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2.2.3 Results 

Thrombin and fibrin production for blood flow over 250-µm collagen/TF  

For perfusion of CTI-treated whole blood across a 250-µm long patch of 

collagen/TF (1 molecule-TF/µm2), platelets rapidly accumulate and create a sheltered 

reaction environment triggered by TF for production of thrombin and fibrin [52,56].  The 

effluent can be sampled and subjected to immunoassays to determine the measured 

species flux for a 250-long x 250 µm-wide patch of collagen/TF for TAT and F1.2, in the 

presence and absence of fibrin assembly (± GPRP) (Figure 2-8A, C).  The dynamic 

accumulation of fluorescent fibrin in the experiment was converted to a fibrin concentration 

by end-point immunoassay of D-dimer, post-plasmin treatment (Figure 2-8E).  For the 7 

reaction rate coefficients (a1- a7) (Figure 2-7B, Table 2-1), only 3 rates required 

adjustment (𝜂;, 𝜂7, 	𝜂0) from their literature values in order to simulate thrombin and F1.2 

elution and fibrin polymerization in the presence and absence of GPRP.  The adjustments 

for prothrombinase activity (𝜂; = 0.18) and thrombin activation of FXIa were modest 

(𝜂0 = 0.36) and could involve either transport rate limits or just as possible the difference 

of the reaction in the whole blood milieu in comparison to dilute buffer conditions used in 

enzyme studies. The adjustment in thrombin mediated activation of fibrinogen was 

markedly pronounced, requiring a 20-fold reduction in the rate (𝜂7 = 0.05). This 20-fold 

reduction in rate corresponds either to a ~80-fold increase in Km (unlikely) or an 80-fold 

decrease in the intraclot level of fibrinogen substrate relative to plasma levels. In the 

experimental measurement, the generation of fibrin per thrombin molecule was 

unexpectedly low, given the known speed of FPA release by thrombin (kcat = 80 s-1).  In 

considering the value 𝜂7 as an effectiveness factor (actual rate/ideal rate in the absence 
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of transport limits), the penetration of fibrinogen (340 kDa) into the dense fibrin-rich core 

of the clot is hypothesized, and required in the model to be diffusion-limited. 
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Figure 2-8. Comparison of experiment and simulation for TAT, F1.2, and fibrin dynamics.  
Thrombin-antithrombin (TAT) and Fragment F1.2 elution from clots in the presence or absence of 
fibrin (± GPRP) for experimental perfusion of whole blood over collagen/TF (A,C) and in simulations 
under identical conditions (B, D). Fibrin was measured dynamically by fluorescent fibrinogen 
incorporation and then calibrated by end-point D-dimer assay following plasmin degradation (E), 
while the intrathrombus fibrin concentration was simulated (F). 
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The model clearly predicts that thrombin has difficulty eluting from the fibrin due to 

fibrin binding (Figure 2-8A-B). Once fibrin is prevented from forming in the simulation or 

binding thrombin (a5=0 or setting KD>10 M) or the experiment (+GPRP), the TAT flux 

increases linearly with time for the first 500s and then increases even faster from 500 to 

800s.  As thrombin is generated, a small fragment F1.2 is released as a result of the 

prothrombinase activity.  In both experiment and simulation, F1.2 elutes from the clot even 

in the presence of fibrin (Figure 2-8C-D). Additionally, more F1.2 is made than TAT, since 

thrombin can be inhibited by other inhibitors such as C1 and a2-macroglobulin; the 

simulation accounts for this (Note the value of 0.7 in Eqn. 1 for J-F1.2).  With GPRP to 

eliminate fibrin’s antithrombin-I activity and facilitate FXIa-mediated feedback pathway, 

more F1.2 is detected both in the experiment and in the simulation (Figure 2-8C-D). Under 

flow conditions, fibrin reached a concentration that was 10-fold greater than plasma 

fibrinogen concentration (3 mg/mL, 9 µM) (Figure 2-8E). 

 

Dynamics of intrinsic tenase and prothrombinase 

The dynamics of intrinsic tenase generation, prothrombinase production, and 

thrombin binding to fibrin were explored in the model under various conditions. In the 

model, intrinsic tenase (“IXa” = FIXa/FVIIIa) reaches a level of 30 pM by 200 sec.  By 

turning off thrombin-feedback activation of FXIa (setting a6 = a7 = 0), the model 

demonstrates that most of the intrinsic tenase is generated in the first 200 sec is from 

tissue factor (curve c, Figure 2-9A) while after 500 sec, most of the intrinsic tenase is a 

result of the feedback activation of FXIa by thrombin as seen in curve b = (a – c) (Figure 

2-9A).  FXIa reaches a level of only 5 pM in the simulation (dashed line, Figure 2-9A) 

demonstrating how potent FXIa can be for FIXa production and thrombin production.  

Similarly, the intrinsic tenase can be turned off (i.e. severe hemophilia) by setting a2 = a3 
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= 0 such that all of the prothrombinase is the direct result of the extrinsic tenase (Figure 

2-9B).   In this case, very little prothrombinase is generated, as expected for extreme 

hemophilia A/B.  The role of FXIa in prothrombinase generation can be seen, especially 

after 500 sec, where most of the prothrombinase is a downstream result of the generation 

FXIa (Figure 2-9B).  In the simulation, little thrombin is made when the extrinsic 

tenase/FIXase (TF*) cannot generate FIXa (a2=0), again consistent with the 

circumstances of severe hemophilia.  As expected from the dynamics for prothrombinase, 

the majority of thrombin made at times >500 sec was the result of thrombin-feedback 

activation of FXIa (Figure 2-9C).   Thrombin reached 18 µM-levels after 800 sec of clotting 

with almost all of it bound to the weak (E-domain) and strong (g’) site and about only 1% 

of the thrombin (~100 nM) existing as a free species (Figure 2-9D).  By 800 sec of clotting, 

the full effect of cascade amplification is seen in that an initial surface concentration of 

[TF]o = 1 molecule-TF/µm2 (2.2 pM TF/VIIa = TF* in the core) results in the generation of 

30 pM intrinsic tenase, ~15 µM prothrombinase, ~18 µM thrombin (100 nM free thrombin), 

and ~90 µM fibrin (30 mg/mL). 
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Figure 2-9. Concentration of the procoagulants predicted by the ODEs model.  
The concentration of FIXa (ie the intrinsic tenase, FIXa/FVIIIa) generated by all pathways (a,blue), 
in the absence of feedback with FXIa=0 (c, orange) and by the FXIa-feedback pathway (b, red) 
calculated via a-c. (A).  FXIa is shown as dashed-line. The concentration of FXa (ie. 
Prothrombinase, FXa/FVa) generated by various pathways (B) demonstrating that only a minor 
fraction of FXa is derived from TF/VIIa in the simulation.  The concentration of thombin generated 
via various pathways (C). The majority of intrathrombin thrombin is bound to the g’-site in fibrin with 
<100 nM as free thrombin (D). 
 

Role of g’ fibrinogen level   

The range of g’ fibrinogen concentrations can vary in healthy individuals [57], with 

a reference range of 0.088 to 0.551 mg/mL. Additionally, fibrinogen is an acute response 

gene and the fraction of splice variant can change. The concentration of g’ fibrinogen 

concentrations and the g’ fibrinogen/total fibrinogen ratio have been reported to be relevant 

in thrombosis, and different in different stages of disease, potentially with some protectant 
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effect in venous thrombosis [41]. In the simulation, we varied the g’ fibrinogen 

concentration to explore the effect on the co-regulation of fibrin and free thrombin 

concentration. With more g’ fibrinogen, there was slightly more high-affinity sites for 

thrombin, therefore, sequestering more thrombin and decreasing the fibrin and free 

thrombin concentration (Figure 2-10A-B).  In contrast, a 50% reduction in gq caused a 

slight increase in the level of free thrombin and the amount of fibrin made. However, the 

effect of g’-fibrinogen levels were not particularly marked, a reasonable result given the 

excess fibrin that is formed relative to thrombin, but still suggestive of a protective or 

regulating contribution in venous thrombosis.   
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Figure 2-10. Effect of γ’ site concentration and escape time on thrombin and fibrin.  
The thrombin (A) and fibrin concentration (B) at 50%, 100%, and 200% of normal levels of g’-
fibrinogen. The thrombin (C) and fibrin concentration (D) for different diffusional escape times of 
free thrombin from the clot. 
 

 

Protein escape time 

As reported previously, platelet contraction can alter protein transport [55] with 

soluble proteins retained longer in the core of the clot than the less dense outshell shell.  

In the laser injury mouse model, albumin half-life in the clot core has been measured to 

be about 2 sec.  In the simulation, we artificially adjusted the escape time between 1 sec 

and 4 sec to explore how intrathrombus diffusion influences local free thrombin and, 

consequently, fibrin production. A longer escape time of 4 sec resulted in dramatically 

higher intrathrombus concentration of fibrin and free thrombin, indicating the model was 
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very sensitive on escape time. The concentration of thrombin increase more than 3-fold 

with a doubled escape time to 4 sec (Figure 2-10C-D).   

 

Convection-diffusion simulation of thrombin loading and elution from fibrin 

To simulate dynamic concentrations of intrathrombus thrombin in the core, the 

velocity field and convective-diffusive transport of thrombin was calculated by COMSOL 

(Figure 2-11A-B). The empirically measured flux of thrombin JIIa(t)|Y=0 (via F1.2 ELISA) 

was set at the bottom boundary condition of the core region. The empirically measured 

time-varying fibrin concentration fibrin(t) (calibrated by end-point D-dimer ELISA) was set 

uniformily in the core region. The concentration of Eq and gq sites were to 1.6x fibrin(t) and 

0.3x fibrin(t), respectively. After 800 sec, the thrombin flux entering the domain was set to 

zero in order to explore long term thrombin elution from the clot. The time-averaged flux 

into and out of the clot outlet (Figure 2-11C-D) revealed that >90% of the thrombin was 

captured by the fibrin, via both sites. By 500 sec, the concentration of intrathrombus 

thrombin was only 61 nM, only about 1% of total thrombin (5.5 μM) in the clot (Figure 

2-11C-D), indicating that the literature KD values for binding were consistent with actual 

independent measurements of TAT elution.  The transient concentrations of total 

thrombin, intrathrombus free thrombin, and bound thrombin to each site, are shown in 

Figure 2-11E. After 800 sec, the thrombin flux from the bottom plate was set to zero and 

the thrombin in the clot was allowed to be eluted by diffusion under prevailing flow 

conditions. The binding of thrombin by fibrin was sufficiently strong under a venous shear 

rate with an apparent half-life in the clot of 1.1 hour (Figure 2-11F). Thrombin eluted slowly 

into the flow field, relative to its half-life in the presence of antithrombin, such that its 

concentration would not be expected to perturb the hemostatic balance in the circulation. 
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Thus, circulation levels of TAT can accumulate over hours and be measured in patients, 

even when ~90% of the thrombin made in the first 800 sec is fibrin bound. 
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Figure 2-11. Transient convection-diffusion of thrombin into and out of a fibrin domain 
exposed to venous flow.   
The 2D simulation domain and imposed boundary conditions (A) allowed determination of the 
velocity field (B) and the intrathrombin thrombin transport dynamics over time (C, D).  The average 
concentration of total, free, and bound thrombin in the clot domain are shown for imposed thrombin 
flux and fibrin concentrations (E).  After 800 sec, no fresh thrombin was delivered into the clot and 
the elution of thrombin from the clot domain was followed (F). 
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2.2.4 Discussion 

By assuming plasma zymogens can enter a thin clot at a rate significantly greater 

than their consumption, a highly reduced and essentially linearized ODE model provided 

a reaction topology suitable for accurate prediction of blood clotting on collagen/TF under 

venous flow. The thin film assumption was first formalized in Kuharsky-Fogelson model 

[23] to generate a large systems of ODEs describing clotting under flow. With the well 

mixed, thin film approximation, we were able to simplify clotting under flow to 8 ODEs and 

19 parameters. A total of 16 parameters were from literature and only 3 were adjusted in 

order to fit the measured TAT and F1.2 and fibrin generation data (± GPRP).  Of the 3 

adjustable parameters, only the rate of fibrinogen activation by thrombin appeared to be 

strongly diffusion-limited (𝜂7 = 0.05). This result was not particularly surprising given the 

enormous size of fibrinogen in comparison to the other coagulation factors. While ignoring 

cofactor activation of FVa and FVIIIa as non-rate limiting appeared to be compatible with 

predicting clotting of healthy blood, the generation of FIXa was absolutely required for 

robust thrombin production. 

As an ODE model, the actual transport physics were mainly parameterized by the 

rate of free thrombin elution from the clot, guided by experimental measurements of ~2-

sec half-life of flash-activated albumin in a clot subjected to flow along its outer boundary. 

In the presence of thrombin binding to fibrin, the elution rate of free thrombin from the clot 

appears to be an important regulator of clotting (Figure 2-10C-D).  The 2-sec elution half-

life for proteins was consistent with (i) in vivo mouse measurement, (ii) the human blood 

microfluidic measurements, and (iii) the average time it takes a protein to diffuse an 

average distance of 15 microns.    

The roles of FXIIa in mouse thrombosis models [58] and platelet released 

polyphosphate to amplify thrombin-mediated feedback activation of FXIa [7] have 
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motivated the pharmaceutical development of FXIIa, FXIa, and polyphosphate inhibitors. 

In Figure 2-9A, FXIa reaches ~5 pM by 500 sec of clotting and the amount of thrombin 

generated between ~500 and 800 sec is largely FXIa-dependent (Figure 2-9C). This is 

exactly consistent with microfluidic experiments conducted with anti-FXI antibody that 

blocked the increase of TAT and F1.2 flux and fibrin deposition after 500 sec [7,50,52].  

By calibrating the model on measured thrombin and fibrin generation rates, the 

simulation provides insights, based on Table 1 kinetics, into pathways proximal to 

thrombin.  The concentrations of FIXa/FVIIIa and FXa/FVa and FXIa were particularly low 

and would be difficult to measure directly inside the clot under flow conditions. Over 800 

sec of clotting, the model revealed “cascade amplification” from 30 pM levels of intrinsic 

tenase to 15 nM prothrombinase to 15 µM thrombin to 90 µM fibrin, with FXIa pathways 

contributing significantly after 500 sec.  Interestingly, little thrombin results directly from 

the FXa produced by TF/FVIIa, consistent with severe hemophilic blood producing little 

fibrin following perfusion over TF surfaces [59]. 

For the thin core region within the rapidly formed platelet deposit, the kinetics of 

thrombin and fibrin production are largely sheltered from the prevailing flow on the outer 

boundary of the clot. The current model may have some applicability to core dynamics 

during TF-driven arterial thrombosis since the core thickness (thrombin and fibrin and P-

selectin positive region) has been measured to be relatively similar between the venous 

(100 s-1) and arterial (2000 s-1) condition [60]. 

As a model analyzing dynamics limited to the thin, core region using ODEs, the 

model was not designed to predict clot growth and spatial dynamics over distances of 

100s or 1000s of microns.  However, the TF-dominated thrombin generation rate in the 

core region could be coupled to spatial models of platelet deposition and FXIa-enhanced 

thrombin generation. The reduced model focuses on concentration changes of thrombin 
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and fibrin in the thin “core” region which is only 15-microns thick. Since proteins can diffuse 

this short distance in ~10 sec, the well-mixed assumption of this thin region is reasonable, 

although not suited for predicting longer distance wave propagation such as found for 

clotting in stagnant plasma over millimeter distances [61–63]. 

The full biochemical and spatial complexity of human coagulation (typically 

involving >50 reactions in reality and in simulation) may relate more to the kinetic demands 

of hemostasis and its strong selective pressure (eg. surviving child birth), rather than to 

the complexities of thrombosis in older adults of modern times. The reduced model 

exploits the thin-film approximation under flow to emphasize a few key zymogen activation 

events at constant zymogen concentration. Despite its simplicity, this reduced model may 

have a useful implementation within more complex spatial thrombosis models that include 

platelet activation and accumulation [25,64]. 

The reduced model is not directed at describing the full progression of a thrombotic 

event over large spatial distances in large vessels, particularly where platelet 

accumulation dominates the growth process. However, this model may be very useful in 

establishing a surface TF-dependent thrombin flux and fibrin regulation that is a time-

dependent boundary condition to a larger multi-species PDF model where platelets 

continue to accumulate and thrombin production transitions to platelet 

polyphosphate/FXIa-dependent. 

Few simulations of clotting under flow include the role of anti-thrombin-I activity of 

fibrin or g’-fibrinogen levels. The ratio of g’-fibrinogen to total fibrinogen may be clinically 

relevant. Reduced g’-fibrinogen levels have been associated with an increased venous 

thrombosis risk [15,41] Here, we demonstrated a simplified ODEs model to simulate the 

thrombin and fibrin generation.  This reduced model may be particularly useful in 
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multiscale simulations that seek to account for single platelet phenomenon [65], 

microscopic attributes of a wound site [56], and whole vessel dynamics [25,35]. 
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CHAPTER 3: SENSITIVITY ANALYSIS OF A REDUCED MODEL 
OF THROMBOSIS UNDER FLOW: ROLES OF FACTOR IX, 

FACTOR XI, AND g’-FIBRIN 
 
 
3.1 Introduction 

Blood clotting occurs under flow conditions in many circumstances of hemostasis 

or intravascular thrombosis. When tissue factor is exposed to the blood the coagulation 

cascade is triggered, resulting in the eventual generation of thrombin and the 

polymerization of fibrin.  The molecular events of this protease cascade are well studied 

and computer simulations of isotropic coagulation (TF added to plasma) typically include 

20 to 60 individual parameterized reactions [21,22,45].  The complexity is increased by 

the presence of flow, the participation of platelets in clot growth, and various strong 

couplings and feedbacks [49,65,66]. Detailed models of coagulation under flow often 

require 20 to 50 PDEs and more than 100 parameters. Numerous reviews have discussed 

both continuum and particle-based numerical approaches [20].  The further goal of 

multiscale modeling seeks to deploy complex vascular flows with realistic models of 

platelet signaling and coagulation function [64,67,68], all of which is extremely demanding 

from a computation point of view. Reduced models offer advantages in bridging scales 

and in handing 3D coupled reaction-diffusion-convection problems.  

For clotting isotropically in a tube or clotting under flow conditions, plasma 

zymogen variations can be studied by Monte Carlo simulation or with highthroughput 

experiment to explore sensitivity to initial condition [22]. Blood plasma contains zymogens 

whose concentrations can vary in the healthy population [69]. These variations impact 

coagulation time as was seen in a sensitivity analysis that highlighted early FVIIa 

participating reactions [70]. Often, the time to generate thrombin is the key parameter used 

in sensitivity analysis [71].  For example, using a sensitivity analysis of thin film 
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compartment model of clotting under flow, Leiderman et al. identified an unexpected 

competitive reaction involving Factor V that influenced hemophilic severity.  However, 

these models have reaction networks that do not include the dynamics of fibrin generation 

and the binding of thrombin to fibrin via a weak site and a strong site.  Fibrin has 

‘antithrombin-I activity’ which includes (i) thrombin exosite I binding to the low affinity 

(Kd~2.8 uM site) in the E Domain, (ii) thrombin exosite II binding the high affinity site 

(Kd~0.1 uM) in the D-domain of the alternative splice variant, γ’-fibrin(ogen), (iii) a potential 

bivalent interaction, and (iv) irrerversible entrapment [72]. The γ’-fibrinogen splice variant 

represents about 6–8% of total γ’-chains, with γA/γ’ heterodimer representing 12–16% of 

total fibrinogen [1]. 

Typically, simulating reactions under flow requires PDE models, however the thin 

film approach can reduce the system to ODEs that include mass transfer coefficients [24] 

or accommodate transport limits with effectiveness factors (η = actual rate/ideal rate) [73].  

In the present study, we explored the sensitivity of an extrinsic pathway model for a 15-

micron film that was previously shown to simulate fibrin formation dynamics and thrombin 

generation dynamics. 
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3.2 Materials and Methods 

The reduced model supported by experimental data to predict thrombosis under 

flow was described in detail previously[74]. Briefly, the model simulates blood clotting 

under venous flow over collagen/ TF (1 TF/ μm2) with 15-micron thick “core” region (δ = 

15 μm, porosity ~0.5) supported by direct imaging. The model includes extrinsic tenase/ 

FIXase activity, intrinsic tenase activity, prothrombinase activity, feedback activation of 

FXIa by thrombin, fibrin generation, and thrombin bindings to fibrin. Thin film assumption 

allowed the linearization of the Michaelis-Menton kinetics from publications. The reduced 

model (7 rates, 2 KD, enzyme half-lives~ 1 mins) only required 3 adjustments from 

published values measured under static conditions to predict the elution rate of thrombin-

antithrombin (TAT), fragment F1.2 with or without fibrin formation, and intrathrombus fibrin. 

The schematic of the reduced model is shown in Figure 3-1A. The experimental data of 

fibrin dynamics and F1.2/ TAT flux with/without fibrin formation are shown in Figure 3-1B-

D. The effective volume for enzyme reaction and initial conditions are shown in Chapter 

2.  The simulation results compared to experimental data are shown in Chapter 2. 
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Figure 3-1. Schematic of the reduced model. 
With 7 reactions, only the activated proteases are shown (A). All zymogens were assumed to enter 
the clot core by diffusion to maintain their plasma level [S]o. All active enzymes had a 1-minute half-
life, with TF* set to 3 min. Elution rate from the core was set to 2-sec half-life. The dynamic of fibrin 
from 8-channel device of the fibrin fluorescence intensity with the end-point concentration 
determined by D-dimer ELISA (B). Thrombin flux from the collagen/TF surface determined by 
thrombin-antithrombin complex (TAT) ELISA with and without GPRP to allow fibrin formation (C). 
Thrombin flux from the collagen/TF surface determined by fragment F1.2 ELISA with and without 
GPRP to allow fibrin formation (D). 
 

The initial concentration of 5 plasma zymogens (FXI, FIX, FX, FII, fibrinogen) and 

2 fibrin binding sites (weak sites and γ’-sites) are obtained from literature value and shown 

in Table 2-1. The results of baseline initial concentration all outputs are shown in 

Supplement Figure III, including the dynamics of FIXa, FXa, FXIa, thrombin on different 

sites, Fibrin, and F1.2/ TAT flux. Sensitivity analysis evaluate the effect of each variable 

on model predictions, and we followed a similar sensitivity analysis used by a recent study 

[71]. Although there is other way for sampling [70], we varied the concentration of 7 

variables (5 zymogens and 2 thrombin binding sites) ± 50% described in [71]. First, we 

performed a local sensitivity test where the variables were changed one-at-a-time. For 

visualization, the change of the maximum concentration of each species over 800 sec, 

instead of whole dynamics, was shown with respect to a range of variant. We then 
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performed 10,000 Monte Carlo simulations where all the variables were sample uniformly 

and independently between 50-150% from their baseline concentration. 

The dynamics of fibrin deposition in 8-channel devices has been used to evaluate 

coagulation in whole blood under flow [27,75–77]. Therefore, we marked the top 2% and 

bottom 2% of simulations that produced maximal and looked at the distribution of the 7 

variables. To evaluate the potency of a perfect FXIa/FXI inhibitor, we can turn off the 

feedback pathway described in [74] by setting α6 and α7 (in Table 2-1) to zero. 
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3.3 Results 

3.3.1 Local sensitivity analysis 

By thin film assumption, we were able to simplify the perfusion of CTI-treated whole 

blood clotting over collagen/ tissue factor surface (250 μm, 1 TF/ μm2). Only 3 parameters 

were adjusted from literature to fit the measured TAT, F1.2 and fibrin generation data (± 

GPRP). The reactions and kinetic parameters used in the reduced model are shown in the 

Table 2-1. With well mixed, substrate concentrations in the clot are set to be constant at 

plasma levels from literatures. The dynamics of the procoagulants, thrombin distribution, 

fibrin, flux of F1.2 and TAT predicted by the reduced model with the baseline of plasma 

protein levels and thrombin binding sites are shown in Supplement Figure III. 

However, the levels of plasma zymogens and fibrin binding sites for thrombin vary 

within a range naturally [69]. Here, we analyze the sensitivity of the reduced model output 

of all species (FIXa, FXIa, FXa, thrombin on different sites, TAT/F1.2 flux and fibrin). We 

first used the method of changing a variant one-at-a-time to quantify the sensitivity of each 

output, which was used by [71]. We changed a variant one-at-a-time at a range of 50% to 

150% of normal with others fixed. The local sensitivity of thrombin concentration on 

different sites of fibrin are shown in Figure 3-2. The results suggest that FIX level is the 

most important factor for thrombin. When FIX level is increased 50% from the baseline, 

total thrombin and thrombin binding on to weak sites increase by 100% and 140%, and 

free thrombin and thrombin on γ’-sites increase by around 75% compared to baseline. 

Maximum thrombin concentration is less sensitive to the variation on both thrombin 

binding sites. A stronger effect is seen when the γ’-sites decreases by 50%, thrombin on 

weak sites and free thrombin increase by 80% and 40% more. The variation leads to 

similar trend on procoagulants (FIXa, FXa, FXIa), and the results are shown on Figure 

3-3. Variation in FXI has more effect on FXIa. Fibrin as the final product of the coagulation 
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cascade doesn’t change dramatically with the variants. The fibrin concentration stays 

within ± 50% by varying each inputs. Lastly, there are similar effects of F1.2 and TAT flux 

(Figure 3-3 E, F), but the effect on F1.2 is stronger. 

 

Figure 3-2. Local sensitivity analysis of total thrombin, free, and bound thrombin in the clot.  
The change of intrathrombus thrombin concentration on different sites due to the variation of 
plasma protein levels or thrombin binding sites on fibrin. The levels were changed one-at-a-time. 
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Figure 3-3. Local sensitivity analysis of procoagulants, fibrin, F1.2 flux, and TAT flux.  
The concentration change of FIXa (A), FXa (B), FXIa (C), fibrin (D), and flux of F1.2 (E) and TAT(F) 
due to the variation of plasma protein levels or thrombin binding sites on fibrin. The levels were 
changed one-at-a-time. 
 

3.3.2 Global sensitivity test 

To further investigate how the variants would affect the results of reduced model, 

a global sensitivity analysis was performed. 10,000 Monte Carlo simulations were 

conducted with 7 variables including the levels of 5 plasma protein and 2 thrombin binding 

sites. Each variable was sampled between 50 and 100% of their baseline uniformly and 
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independently for every simulation. The results fibrin concentration for every simulation 

are shown in Figure 3-4A. The mean, standard deviation and range are shown in Figure 

3-4B, and the fibrin concentration distribution at 780 sec are shown in Figure 3-4C. The 

mean and standard deviation of fibrin concentration are similar to the experimental results, 

shown in red in Figure 3-4A B, where whole blood was perfused over collagen/TF surface 

followed by plasmin digestion and D-dimer ELISA [50]. The dynamic results and the 

distribution at 800 sec of thrombin and other species are shown in Figure 3-5. Normal 

range variation of 7 inputs leads to free thrombin ranging most from 20 to 300 nM. The 

simulation results of TAT and F1.2 Flux are shown in Figure 3-6, and they agree with 

experimental data (shown in red, [50]) of ELISA analysis of effluent. 
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Figure 3-4. Fibrin concentration of 10,000 simulations compared to experimental data of 
blood clotting over collagen/ TF under venous flow rate.  
Fibrin concentration of 10,000 Monte Carlo simulations of 7 variables (A). The mean, standard 
deviation, range (B), and the distribution (D) of the simulations, with the experimental end-point 
estimation of fibrin concentration from the D-dimer ELISA (shown in red). The 7 variables of plasma 
protein levels and thrombin binding sites were generated uniformly and independently. 
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Figure 3-5. Total, free, and bound thrombin of 10,000 simulations of blood clotting over 
collagen/ TF under venous flow rate.   
The mean, standard deviation, range (A, C, E, G) and the distribution at 800 sec (B, D, F, H) of 
thrombin on different sites of 10000 MC simulation varying plasma protein levels and thrombin 
binding sites ± 50% uniformly and independently. 
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Figure 3-6. Transient convection-diffusion of thrombin into and out of a fibrin domain 
exposed to venous flow.   
The mean, standard deviation, range (A, C) and the distribution at 800 sec (B, D) of TAT and F1.2 
flux of 10000 MC simulations varying plasma protein levels and thrombin binding sites ± 50% 
uniformly and independently. The experimental data of blood clotting over collagen/TF from Zhu, 
ATVB(2018)  are shown in red. 
 

3.3.3 Conditioned inputs distribution 

We performed 10,000 Monte Carlo simulations by varying 7 variables 

independently. We further focused on the model’s result on fibrin production and marked 

the top and bottom 2% of the final fibrin concentration shown in Figure 3-7A. The 

distribution of the plasma protein levels and thrombin binding sites of top and bottom 2 % 

are shown in Figure 3-7B-C. By looking at the subset of top 2% of fibrin generated, the 

distribution of plasma FIX, FXI levels and gamma’-sites are narrower and skewed away 

from 100%. These suggest that the high levels of FIX and FXI and less γ’-sites are 
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important and lead to more fibrin, which agree to our local sensitivity analysis. For the 

subset of bottom 2%, low levels of FIX and FX lead to less fibrin. 

 

 

Figure 3-7 Plasma protein levels and thrombin binding sites distribution of the subsets of 
top and bottom 2% of fibrin concentration of 10,000 simulations.  
Fibrin concentration of 10,000 Monte Carlo simulations of 7 variables varying uniformly and 
independently. Top 2% and bottom 2% are labeled (A). Plasma protein levels and thrombin binding 
sites distribution of top 2% (B) and bottom 2% of the simulations (C). 
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Feedback pathway has emerged as a novel target for antithrombosis with little 

effects on hemostasis [78]. Here we evaluated the effect of blockage of FXIa by turn off 

feedback pathway in our simulations. We first labeled the 2%, middle 50% and bottom 2% 

of the final fibrin concentration in the 10,000 simulations, and then set the FXIa to zero to 

see the efficacy of the inhibitor. The results are shown in Figure 3-8. The top 2% lead to 

71% fibrin reduction by an ideal FXIa inhibitor, while the middle 50% and bottom 2% of 

the simulation only has 50% and 33% fibrin reduction. Here we showed that the efficacy 

of feedback pathway inhibitor may vary within a normal range of zymogens. 
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Figure 3-8. The potency of the blockage of FXIa varies over the subsets of fibrin 
concentration. 
The effect of inhibition of FXIa on fibrin concentration of top 2% (A), middle 50% (B), and bottom 
2% (C) of 10,000 simulations. 
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3.4 Discussion 

In this study, we extended our reduced model and performed sensitivity analysis 

of an extrinsic pathway coagulation ODE-model under flow. We first performed the local 

sensitivity analysis where each of 5 plasma zymogens and 2 fibrin binding sites for 

thrombin is varied ±50% from their published data one-at-a-time. This indicated that the 

level of FIX and γ’-binding sites are the most important variables for most of the matrices. 

For the global sensitivity analysis, 7 variables are changed simultaneously and 

independently within 50-150%. With 10,000 Monte Carlo simulations, we shown the 

distribution of each procoagulants in the model and found that the mean and standard 

deviation of fibrin generation and TAT/ F1.2 flux met with the data measured from healthy 

donors[50,52]. We also showed that the FXIa inhibitor may have different potency across 

normal ranged plasma protein and thrombin binding sites, and the top 2% of the final fibrin 

concentration has the stronger effect of 71% fibrin reduction. 

Plasma levels vary within individual in normal range [69]. Review has summarized 

that high levels of coagulation factor are associated with thrombosis [79]. In a large 

population-based, case–control study studies, Leiden Thrombophilia Study, research 

showed that elevated FIX [80] and FXI [81] are related to higher risk for thrombosis. 

Models has been developed to study the sensitivity to initial clotting factor concentration, 

both static [70,82] and under flow [71]. However, Link et al’s model  has small sensitivity 

to normal variation of initial clotting factors. This might be due to no fibrin cleavage reaction 

or thrombin binding was included and the matrices they chose (lag time, max relative rate, 

and final thrombin concentration). With the reduced model, we are able to identify FXI and 

FIX as risk factors for thrombosis. 

It has been shown that thrombin binds to fibrin clot nearly irreversibly and localizes 

by γ’-fibrin [50]. The bindings of thrombin in the clot not only minimize downstream 
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coagulation, but also protects thrombin from antithrombin inhibition [18]. Studies 

suggested that the variant interacts with other plasma protein and influences on clot 

formation and strength [83,84]. Fibrinogen γ’ level varies in patients, changes during 

inflammation and associates with arterial and venous thrombosis clinically [85]. Although 

the association between γ’/total fibrinogen ratio and thrombosis remain unclear and 

sometimes shows the opposite [42], studies suggested that decrease ratio are associated 

with higher risk for thrombosis [41]. Our reduced ODEs-model demonstrates that low level 

of γ’-fibrin is the dominant factor in top 2% fibrin generation and it increases thrombin flux 

and fibrin generation. These results confirm with the explanation that the antithrombin-I 

activity of fibrin affects coagulation and reduces thrombin and its further activation. 

Simulations give insights and help experimental design for further discovery in 

coagulations [86]. Recently, Link et al used the computationally driven approach to identify 

FV as modifier for hemophilia, further confirm it with experiment, and propose a potential 

mechanism. Although there are limitations and our model only describe the thrombosis 

under venous flow over TF-surface, it emphasized crucial reactions which have been often 

overlooked. With emerging strategies targeting FXI [87], our results provide insights in 

variation in potency of the inhibitors within normal range of clotting factors. Despite of the 

simplicity, this reduced model may be useful for its coagulation phenotype and further 

implementation with multiscale modeling which includes platelet accumulation [64,65,67]. 
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CHAPTER 4: A MICROFLUIDIC APPROACH FOR DRUG TESTING 
 
 
4.1 Dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic with 

shear-dependent effects on platelet-collagen binding and thrombin 
generation 

4.1.1 Introduction 

Antithrombotic drugs are typically classified into one of three major categories: 

antiplatelet, anticoagulant, or fibrinolytic agents [1,2]. Common antiplatelet therapeutics 

include aspirin and clopidogrel which both inhibit secondary platelet agonist generation 

(thromboxane A2 and ADP, respectively) [88–90], as well as inhibitors of the integrin 

ɑIIb/β3 [91]. Anticoagulants are responsible for preventing thrombin generation and fibrin 

polymerization. Warfarin and various heparins have been used as an oral and parental 

anticoagulant for several decades, but recent advances have focused on specifically 

targeting coagulation factors, such as thrombin and factor Xa [88]. Finally, fibrinolytic or 

thrombolytic drugs (most notably tPA: tissue plasminogen activator) promote the 

generation of plasmin, an enzyme that cleaves fibrin [92]. 

With increasingly complex cardiovascular disease states comes a need for the 

administration of multiple antithrombotics with different mechanisms of action. While 

certain classes of drugs have the potential to function synergistically, there is an 

associated increased bleeding risk as the number of drugs increases [93,94]. Therefore, 

identifying a method for combining the antithrombotic functions of antiplatelet and 

anticoagulant agents into a single therapy can have a potentially great impact on the field, 

as uncertainty regarding optimal use remains [94].      

Heparin (usually referred to as unfractionated heparin; UFH) is yet another 

common clinically-used antithrombotic agent which carries anticoagulant behavior through 

its binding and activation of antithrombin. Antithrombin then works to deactivate circulating 

thrombin and factor Xa to hinder the coagulation process [95]. Heparin can bind directly 
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to thrombin (Kd=100 nM) resulting in anticoagulant behavior [96]. Heparin is derived from 

mast cells which line the vascular walls usually in the same general location as tissue 

factor (TF). Upon tissue injury, mast cells are activated and release heparin proteoglycans 

(HEP-PGs) which are much higher in molecular weight than UFH [97,98]. These structures 

have been shown to exhibit both anticoagulant features, as does heparin typically [99], as 

well as specific antiplatelet properties, most notably involving the platelet-collagen 

interaction and subsequent aggregation and fibrin polymerization [97]. The 

unconventional ability for a heparin-based entity to impact collagen-dependent platelet 

activation could be attributed to the fact that type I collagen has binding sites for heparin, 

in addition to the heparin binding site to von Willebrand Factor (vWF) bridging platelets 

with collagen, relevant under arterial shear rates [100]. The concept of designing synthetic 

HEP-PG mimetics, structured with a protein core and conjugated with UFH, has been 

demonstrated [97,98,101,102]. 

Despite various results comparing the ability of HEP-PGs and UFH to inhibit 

collagen-mediated platelet aggregation and serotonin release under flow conditions [97], 

previous work with dual anticoagulant and antiplatelet (APAC) conjugates has been 

focused primarily on in vitro platelet aggregometry studies and in vivo vascular models 

[98,102]. The importance of understanding the functionality of APACs, as is the case with 

any novel therapy, in more pathophysiologic scenarios in vitro is crucial. Thus, the focus 

of this work was to compare the results obtained from various in vitro experimental 

techniques to gain a broader understanding for the potential therapeutic effect of synthetic 

HEP-PG mimetics with varying heparin conjugation levels (CL10, CL18, HICL).   
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4.1.2 Materials and methods 

Reagents 

Reagents were obtained as follows: Anti-human CD61 (BD Biosciences, San Jose, 

CA), Alexa Fluor® 647 conjugated human fibrinogen (Life Technologies, Waltham, MA), 

corn trypsin inhibitor and D-Phe-Pro-Arg-chloromethylketone (CTI and PPACK, 

respectively; Haematologic Technologies, Essex Junction, VT), Sigmacote® siliconizing 

reagent (Sigma, St. Louis, MO), Dade® Innovin® PT reagent (Siemens, Malvern, PA), 

collagen Type I Chrono-Par™ aggregation reagent (Chrono-log, Havertown, PA). Whole 

blood was drawn via venipuncture from healthy donors following University of 

Pennsylvania Institutional Review Board approval into a syringe loaded with 100 µM 

PPACK (to inhibit thrombin activity altogether for the study of platelet deposition on 

collagen only) or 40 µg/mL CTI (to inhibit contact pathway and measure platelet and fibrin 

deposition). Prior to each blood draw, donors self-reported to be free of any medications 

for 7 days and alcohol use for 48 hours. Additionally, female donors self-reported to not 

using oral contraceptives. 

Three different APAC molecules were synthesized (Aplagon, Helsinki, Finland) as 

previously described [98,102]. In brief, dual antiplatelet and anticoagulant (APAC) 

conjugate comprises of protein core, where UFH chains are bound by covalent di-sulfide 

bridges provided by a cross-linker molecule to reach various conjugation levels (CL) of 

heparin. 

 

Microfluidic assays  

Microfluidic experiments were run as previously described [103]. Glass slides were 

treated with Sigmacote®. A volume of 5 μL of collagen was perfused through a patterning 

channel device (250 μm wide and 60 μm high) to create a single strip of fibrillar collagen. 
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Lipidated TF was then sorbed to the collagen surface by introduction of 5 μL of Dade 

Innovin PT reagent (20 μM stock concentration). The Dade Innovin PT reagent was 

incubated with the collagen for 30 min without flow and then blocked and rinsed with 20 

μL of bovine serum albumin (1% BSA in Hepes-buffered saline). An 8-channel microfluidic 

device was vacuum-mounted perpendicularly to collagen/TF surfaces forming 8 parallel-

spaced prothrombotic patches (250 x 250 μm). APAC (CL10 7.12 mg/mL; CL18 11.94 

mg/mL or HICL 6.71 mg/mL in phosphate-buffered saline, PBS, 10 mM Na2HPO4, 0.137 

M NaCl, pH 7.5) was diluted in 1% BSA for appropriate concentrations for the analysis. 

Vehicle (1% BSA) or APAC-treated blood was perfused across the 8 channels at an initial 

wall shear rate controlled by a syringe pump (Harvard PHD 2000; Harvard Apparatus, 

Holliston, MA). Each thrombus was formed under constant flow rate (constant Q). Platelet 

and/or fibrin deposition were monitored simultaneously by epifluorescence microscopy 

(IX81; Olympus America Inc., Center Valley, PA). Images were captured with a charged 

coupled device camera (Hamamatsu, Bridgewater, NJ) and were analyzed with ImageJ 

software (National Institutes of Health). To avoid side-wall effects, fluorescence values 

were taken only from the central 75% of the channel. The background-corrected 

fluorescence values were fitted by use of a log (inhibitor concentration) vs. response 

routine in GraphPad Prism 5.00 (GraphPad Software) to calculate the half-maximal 

inhibitory concentration (IC50). 
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4.1.3 Results and discussion 

APAC has antiplatelet activity in the absence of thrombin under venous shear rate 

upon collagen 

The 8-channel device, developed by Maloney et al [26], has been used to 

investigate platelet function and coagulation in whole blood under flow. Briefly, eight inlets 

of treated or untreated blood were perfused over collagen (with or without TF) while 

platelet and fibrin deposition can be monitored. The first aim was to determinate the 

antiplatelet effectiveness alone, without the influence of thrombin and fibrin. PPACK, a 

direct thrombin inhibitor, was added as an anticoagulant and blood was perfused over 

collagen at a shear rate of 200 s-1. CL18 (30 µg/mL) inhibited platelet deposition (Figure 

4-1A) at both early times (100 s) of attachment to collagen and at later times (180 to 420 

s) where secondary deposition was occurring, via ADP/thromboxane enhancement 

[104,105]. CL18 caused a dose-dependent inhibition (IC50 = 27 µg/mL, based on endpoint 

fluorescence at 400 s) (Figure 4-1B-C). In similar tests with PPACK-treated whole blood, 

HICL also reduced platelet deposition (IC50 = 57 µg/mL), while CL10 had unclear effect 

of inhibition on platelet deposition (IC50, not determined) (Table 4-1, Figure 4-3A). 

 



www.manaraa.com

72 

 

Figure 4-1. Platelet deposition is dose-dependently reduced by APAC in the absence of 
thrombin under 200 s-1 over collagen in microfluidic assay.  
Vehicle (1% BSA) and APAC (CL18, 30 µg/mL) was added to PPACK-treated whole blood and 
perfused over collagen under venous shear rate. (A) images of platelet deposition, (B) dynamics of 
platelet deposition and (C) dose-response curve and IC50 (± standard deviation [SD]). 
 

 

IC
50

 (µg/ml), 200 s
-1

 

PPACK High CTI 

Platelet Platelet  Fibrin 

APAC CL10 Not determined 25 0.6 

APAC CL18 27 71 5.4 

APAC HICL 57 90 0.5 

Table 4-1. IC50 values calculated at venous shear rate for PPACK and CTI-treated whole 
blood.  
IC50 values were calculated for each APAC species (CL10, CL18, and HICL) under two different 
anticoagulated whole blood conditions (PPACK and CTI). Since PPACK inhibits all thrombin 
activity, APAC-driven inhibition was only observed on platelet deposition. CTI-treated whole blood 
enabled the calculation of IC50 for both platelet deposition and fibrin polymerization.  
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APAC shows both antiplatelet and anticoagulant activity under venous shear rate 

upon collagen/TF 

High level of CTI (40 µg/ml), a FXIIa inhibitor, was used to avoid clot formation in 

the reservoir, which allowed the combined study of platelet deposition in the presence of 

thrombin/fibrin production. Blood was perfused (at 200 s-1) over collagen/TF strip to initiate 

extrinsic pathway. HICL at 30 µg/mL reduced both platelet and fibrin deposition at venous 

flow condition with fibrin production strongly antagonized (Figure 4-2A). HICL produced 

a dose-dependent inhibition of both platelet (IC50 = 90 µg/mL) and fibrin deposition (IC50 

= 0.5 µg/mL) (Figure 4-2B-E, Figure 4-3H-I). Similar tests were run for CL10 (Platelet 

IC50 = 25 µg/mL; Fibrin IC50 = 0.6 µg/mL) and for CL18 (Platelet IC50 = 71 µg/mL; Fibrin 

IC50 = 5.4 µg/mL) (Table 4-1, Figure 4-3B-C, Figure 4-3E-F). For the 3 APAC constructs 

tested at venous thrombotic conditions, each construct was considerably more potent (>13 

to 180-fold) against thrombin generation/fibrin deposition in comparison to inhibition of 

platelet deposition.  
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Figure 4-2. APAC inhibits platelet deposition dose-dependently with simultaneous 
anticoagulant efficacy under 200 s-1 over collagen/TF in microfluidic assay.  
Vehicle (1% BSA) and APAC (HICL, 30 µg/mL) was added to CTI-treated whole blood and perfused 
over collagen/TF under venous shear rate. (A) images of platelet and fibrin deposition, (B) 
dynamics of platelet deposition, (C) dose-response curve and IC50 for platelet deposition, (D) 
dynamics of fibrin polymerization, (E) dose-response curve and IC50 for fibrin polymerization (± 
standard deviation [SD]). 
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Figure 4-3. Dose-response curves for each APAC species at venous shear rate.  
Inhibition on platelet deposition and fibrin formation under two anticoagulated whole blood 
conditions (PPACK and CTI) at venous shear rate (200 s-1) of CL10 (A), (B), (C). CL18 (D), (E), 
(F). HICL (G), (H), (I) (± standard deviation [SD]).  
 

APAC in whole blood is more potent as an antiplatelet agent under arterial than 

venous flow 

Microfluidic methods allow the rapid testing of non-anticoagulated, freshly-drawn 

whole blood, enabling the determination of clotting in the presence of FXII [103]. Blood 

samples need to be carefully handled and minimally perturbed. The concentration of 

APAC was chosen to be 10 µg/mL to match the IC50 order in the previous experiment. 

Whole blood treated with CL10 (10 µg/mL) was immediately perfused over a collagen/TF 

surface at either venous (200 s-1) or arterial (1000 s-1) perfusion.  At this low concentration 

under venous perfusion, there was little antagonism of platelet deposition, but strong 
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antagonism of fibrin deposition (as shown in Table 4-1).  In contrast, under the arterial 

perfusion condition, CL10 displayed considerable potency against both platelet and fibrin 

deposition (Figure 4-4), suggesting that CL10 may antagonize vWF pathways required 

for platelet deposition at arterial flow conditions. As expected, there was considerably less 

fibrin generated under control conditions (no CL10) at arterial flow compared to venous 

flow (Figure 4-4E-F). Finally, APAC and vWF interaction was confirmed by 

immunoprecipitation, where APAC (CL10, biotinylated) was captured by vWF under static 

conditions with collaborators’ help. 
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Figure 4-4. APAC is more efficient in antiplatelet activity under arterial shear rate compared 
to venous shear rate.  
APAC (CL10, 10 µg/mL) was added to untreated whole blood and perfused over collagen/TF under 
(A) venous shear rate and (B) arterial shear rate. APAC has stronger effect on inhibition of platelet 
deposition. (C), (D) dynamics of platelet deposition and (E), (F) dynamics of fibrin generation (± 
standard deviation [SD]). 
 

Concern of bleeding risks associated with combinations of two or more blood 

modulating drugs have sparked interest in developing cardiovascular therapies with dual 

antiplatelet and anticoagulant (APAC) activity. Using naturally-produced HEP-PGs as a 

framework for synthetic alternatives, protein functionalized with conjugated UFH chains 

offers a promising route [98,102]. With our 8-channel device, we demonstrated APAC 

antiplatelet activity with PPACK-treated blood perfused upon collagen. Secondly, we 

analyzed the ability of APAC to interfere with the thrombus growth when CTI-treated blood 
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was perfused upon a collagen/TF surface. We also provide evidence that APACs can 

directly interact with collagen to reduce platelet deposition under flow and to decrease 

collagen-induced calcium mobilization. Additionally, the increased inhibitory activity 

against platelets under arterial flow conditions suggests that APAC when studied in the 

absence of any other anticoagulant may also reduce vWF binding to collagen or modulate 

the VWF-GPIbα interaction. APAC interaction with vWF was supported by the 

immunoprecipitation studies where vWF captured APAC. A schematic summarizing the 

major results is shown in Figure 4-5. 

Other than its traditional anticoagulant mechanism, heparin has been implicated 

to exhibit other antithrombotic effects such as inhibiting endoperoxide metabolites that 

lead to thromboxane A2 production, suggesting aspirin-like functions [106]. Also, collagen 

has previously been reported to have unique heparin-binding sites separate from those 

involved in heparin-triggered thrombin inactivation [100,107,108]. Though the functional 

significance of heparin-collagen binding is still unclear, it may explain the observed 

inhibitory phenomenon of heparin proteoglycans and synthetic APAC conjugates on 

collagen-induced platelet aggregation, especially under blood flow. 

Though certain explanations may be incorrect, and collagen and thrombin appear 

to be the sole targets, more work should be performed to further refine the specific 

antiplatelet and platelet anticoagulant mechanisms of APAC. 
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Figure 4-5. Schematic of APAC functionality as both antiplatelet and anticoagulant agent.  
APAC has anticoagulant effect by accelerating the inactivation of thrombin and factor Xa through 
an antithrombin-dependent mechanism. Its antiplatelet activity results from inhibition on platelet-
collagen interactions.  APAC strongly inhibited platelet deposition under high shear rate by 
attenuating GPIbα-VWF mediated activation. 
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4.2 Using microfluidic assay to characterize PAR4 & FXIa antagonist as potential 
antithrombotic targets 

Most of the approved antithrombotic agents interfere with hemostasis, leading to 

an increased risk of bleeding. FXIa and PAR4 inhibitors have been shown to be safer 

antithrombotic drugs under different assays [87,109]. However, in our microfluidic assay, 

the collagen/TF surface is too potent to show the effect. Here, we collaborated with Bristol 

Meyers Squibb and tried to utilize customized pattering surface to evaluate them as 

antithrombotic drugs under flow. The schematic figure is shown in Figure 4-6. 

 

Figure 4-6. Schematic of the simplified coagulation cascade model. 
Blood coagulation can be initiated via contact pathway or extrinsic pathway. We can modify our 
surface to trigger different pathway. Collagen can capture and further activate platelet, while vWF 
is highly adhesive for platelet, which allows us to investigate the activation of platelet via PAR1 and 
PAR4 by thrombin. 
 

FXIIa and thrombin can activate FXI, resulting in sustained thrombin generation. 

While FXIa plays a key role in thrombosis because of the thrombin-mediated-feedback 

pathway, it only plays a minor role in hemostasis, especially with high tissue 
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factor[27,110]. We evaluated a small molecule that inhibits FXIa, BMS-962212. FXIa 

inhibitor only shows difference at later time point under high TF because TF on the surface 

is potent. However, it can inhibit fibrin formation earlier under low TF and display dose-

dependent response in Figure 4-7A-B. BMS 962212 can also inhibit fibrin formation 

triggered by FXIa surface, and display dose-dependent response shown in Figure 4-7C-

D.  

 
Figure 4-7. The effects of FXIa inhibitor over different surface. 
FXIa inhibitor inhibits fibrin formation under low TF (A) , with the dose-response curve (B). FXIa 
inhibitor inhibits fibrin formation triggered by FXIa surface (C), with the dose-response curve (D). 
 

Thrombin activates platelets by protease-activated receptors PAR1 and PAR4. 

PAR1 is thought to be the main receptor because of its high affinity and sensitivity and is 

therefore regarded as promising antiplatelet target. However, it has been reported for the 
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rising bleeding risk with the FDA-approved vorapaxar. Small molecule antagonists of 

PAR4 has demonstrated antithrombotic activity in human model in chambers [111]. The 

potential of PAR4 as an antiplatelet target has not been well characterized under 

flow[112]. Here, we characterized the pharmacology of BMS-986141, a potent and 

selective PAR4 antagonist, in a microfluidics model of thrombosis. Arterial plaque rupture 

thrombosis was simulated by flowing blood through microfluidics channels patterned with 

von Willebrand Factor to allow platelet adhesion and lipidated tissue factor to trigger 

thrombin generation.  

Our labmate Christopher Verni [113] has shown that BMS-986141 specifically 

blocked calcium mobilization by PAR4 agonist peptide (AYPGKF, IC50~1.3 nM). The 

PAR4 antagonist reduced the secondary phase of calcium mobilization in platelets 

challenged with 200 nM thrombin, without affecting the initial peak calcium, as expected 

for slower more sustained PAR4 signaling compared to the rapid, short lived signaling of 

PAR1. However, BMS 986141, showed no significant effect of PAR4 antagonist under 

strong platelet activation by collagen/TF surface. Therefore, we switched to vWF surface, 

on which the platelet can adhere, so that we can see the subtle effects of PAR 4 

antagonist. For corn trypsin inhibitor (CTI)-treated whole blood perfused over vWF/TF 

surface under high shear rate (800 s-1) in Figure 4-8, BMS-986141 reduced platelet 

deposition by ~ 20 %, but not fibrin deposition (N=7 donors, 27 clots; p < 0.03).  
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Figure 4-8. PAR4 antagonist, BMS-986141, reduces platelet deposition on a vWF/TF surface 
at 800 s-1. 
 

In conclusion, BMS-962212, a FXIa inhibitor, showed no effects on high TF surface 

but displayed inhibition on fibrin formation on low TF surface. The small molecular also 

showed strong effects on fibrin over FXIa surface in a dose-dependent way. In the future, 

it would be interesting to determine the surface concentration of the FXIa by using the 

inhibitor conjugated to fluorophores. BMS-986141 is a highly specific antagonist of PAR4. 

This small molecule reduced platelet deposition in a microfluidic assay of perfused CTI-

treated whole blood over patterned surfaces of vWF/TF, which simulate conditions of 

arterial thrombosis. Future work will be to test the effect of PAR 4 antagonist with the 

combination of thrombin/ factor Xa inhibitors and other antiplatelet drugs. 
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4.3 P2Y12 inhibition of platelet deposition under different shear rate with or 
without thrombin generation 

ADP is an important agonist that induces platelet aggregation through its receptors 

P2Y1 and P2Y12, which is crucial in both hemostasis and thrombosis. P2Y12 antagonists 

has been widely used to demonstrate the role of P2Y12 in platelet function [114,115]. 

Cangrelor has been evaluated in clinical trials of thrombotic diseases for its rapid action 

[116,117]. However, less is known for the role of P2Y12 antagonist on platelet under 

different shear rate in the presence of thrombin. Here, we used the microfluidic thrombosis 

assay to investigate cangrelor under various well-controlled conditions. 

 

Cangrelor can inhibit platelet deposition at venous shear rate under low/no 

thrombin condition 

The 8-channel device was used to investigate cangrelor effects under flow in 

various conditions. Previously, platelet sensitivity to p2y12 inhibitor under flow was 

studied. P2Y12 antagonist, 2MeSAMP [114], was shown to reduce both primary platelet 

deposition and secondary aggregation in the absent of thrombin. Our first aim was to study 

the antiplatelet effect of cangrelor without the influence of thrombin. Human whole blood 

was treated with a direct thrombin inhibitor, PPACK, and perfused over collagen at 100 s-

1 shear rate. Platelet deposition was greatly reduced by Cangrelor at early time points (200 

s) in the absence of thrombin at venous flow rate over collagen (Figure 4-9). At later times, 

we can also see the decrease of platelet fluorescence intensity. From the images, we saw 

only a thin layer of platelet with cangrelor at 30 and 1000 nM. 
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Figure 4-9. Platelet deposition is greatly reduced by Cangrelor in the absence of thrombin 
at venous flow rate over collagen. 
Cangrelor was added at different concentration to PPACK (100 uM)-whole blood and perfused over 
collagen at 100 s-1. (A) Dynamics of platelet fluorescent intensity. (B) Images of platelet deposition 
7.5 mins. 
 
 

Cangrelor at lower concentration can inhibit platelet deposition only at arterial 

shear rate at the absent of thrombin 

Cangrelor at 30 nM had great effect on platelet deposition without thrombin. We 

here tested cangrelor at lower concentration (6.6 nM) at different shear rate (Figure 4-10). 

We also added P-selectin antibody to investigate cangrelor effect on P-selectin (+) core 

region. There was no significant difference in both platelet deposition and P-selectin 

between cangrelor at low concentration (6.6 nM) and control at 100 s-1. However, with 
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same conditions, cangrelor reduced both both platelet deposition and P-selectin signals 

at 800 s-1. Cangrelor had early effect on platelet depostion at 100 s and reduced around 

30% at the end of experiment (500 s). 

 
Figure 4-10. Cangrelor at low concentration shows shear-dependent effects on both platelet 
deposition and P-selectin (+) in the absence of thrombin.  
Cangrelor (6.6 nM) was added to PPACK (100 μM) -treated whole blood and perfused over 
collagen at 100 s-1 (first column) and 800 s-1 (second column). 
 
 

In the presence of thrombin, Cangrelor only inhibit platelet deposition at arterial 

shear rate but not venous shear rate 

To study cangrelor in the present of thrombin and fibrin, blood treated with high 

CTI (40 µg/mL), a FXIIa inhibitor, was perfused over collagen/ TF. We first tested it with a 

range of concentration. Even at high concentration of cangrelor (1000 nM), there was little 

effects on platelet deposition over collagen/TF at 100 s-1 in the presence of thrombin 
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(Figure 4-11). However, at 800 s-1, cangrelor at 30 and 1000 nM reduced platelet 

deposition at early times and around 70% at the end of the experiement (500 s). These 

experiments suggest that cangrelor has shear-dependent effects on platelet in the 

presence of thrombin. 

 
Figure 4-11. Cangrelor reduced platelet deposition in the presence of thrombin at arterial 
shear rate but not venous shear rate over collagen/TF.  
Cangrelor was added at different concentration to HCTI-treated whole blood and perfused over 
collagen/TF. (A) Dynamics of platelet fluorescent intensity at 100 s-1 (B) Images of platelet 
deposition 7 mins. (C) Dynamics of platelet fluorescent intensity at 800 s-1 (D) Images of platelet 
deposition 6 mins. (HCTI: High CTI) 
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We added P-selectin antibody to characterize cangrelor effects on platelet 

structure. Agreed with previous experiment, even at 1000 nM, cangrelor didn’t reduce the 

platelet deposition at venous flow rate in the presence of thrombin (Figure 4-12). 

However, cangrelor affects the morphology of the clot from the images Also, it reduces P-

selectin (+) core region around 25% at venous shear rate in the presence of thrombin.  

 
Figure 4-12. Cangrelor affects the morphology of the clot and reduces P-selectin+ core 
region at venous shear rate in the presence of thrombin.  
Cangrelor (1000 nM) was added to HCTI-treated whole blood and perfused over collagen/TF at 
100 s-1. Cangrelor had little effects on platelet deposition but affected the morphology of the clots. 
 
 

In conclusion, we have tested cangrelor effects on platelet deposition at different 

shear rate with or without thrombin. We found that in the presence of thrombin generation, 

cangrelor only reduced platelet deposition at arterial shear rate but not venous shear rate. 

For the intensity of P-selectin, we also saw the effects on the platelet plug structure. 
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Cangrelor is often used with other antiplatelet drugs or anticoagulants. In the future, it 

would be interesting to see the effects of cangrelor with the combination with other 

antithrombosis agents. The surface concentration of tissue factor or direct thrombin 

inhibitor concentration can also be varied to test the effects of cangrelor at different 

thrombin concentration. The effects of cangrelor on platelet stability and the core/shell 

structure can also be investigated by a new microfluidic assay [118]. 
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CHAPTER 5: FUTURE WORK 
 
5.1 Introduction 

There are few ways to estimate thrombin in clots forming under flow. I have used 

microfluidic devices combined with immunoassay to estimate the thrombin concentration. 

Based on the experimental data, I developed a reduced model to estimate the species. I 

also used the thrombin and fibrin fluxes in a convection-diffusion model to confirm the 

thrombin concentration. Furthermore, with normal variation of 5 plasma zymogens and 2 

fibrin binding sites, I used the reduced model with Monte Carlo simulations to estimate the 

thrombin concentration distribution. Here, I developed two other assays to estimate 

thrombin in clots under flow. The followings are the primary results. These two methods 

will not only confirm previous estimation under venous flow rate, but also allow us to 

calculate the thrombin concentration in clots forming under arterial shear rate. 

 

5.2 Estimation by thrombin active sites calibrated by standard curve 

Our previous studies have shown that the fluorescein-PPACK was able to label 

the thrombin active site and was highly resistant to high shear rate wash out. We followed 

a similar method. First, let the clot grow under flow for 500 second at 100 s-1. After washing 

the clots with HBS for 1 minute, we introduced the fluorescein-PPACK and labeled the 

active sites of thrombin. In order to get rid of the unbinding PPACK, we washed the clots 

again with HBS. The clots were ready for imaging. For quantitatively estimation of the 

fluorescein-PPACK, we filled the channels of microfluidic device with a series 

concentration of fluorescein-PPACK and used linear regression to come up with a 

calibration line (Figure 5-1). We estimated the thrombin concentration in the clots by 

assuming all the thrombin were in the porous core region in the clot. The height of the 

channels was 120 µm, and the porosity and height of the core were previously estimated 
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to be 0.5 and 15 µm by direct imaging. The concentration of thrombin in the clots was 

estimated to be 1.6 µM, which was not far away from other estimations. However, it is still 

a primary result and requires replicates.  

 
Figure 5-1. Estimation of thrombin concentration by active sites.  
Clots were formed at 100 s-1 with HCTI-treated blood perfused over collagen/TF surface. 
Washed by HBS, the thrombin in clots was labeled by fluorescein-PPACK. Calculated by 
calibration line, the thrombin in clots was estimated to be 1.6 µM. 
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5.3 Estimation by fluorogenic thrombin substrate and known kinetics property 

The recent work of Haynes [18] studied clot-bound thrombin with flow chambers 

and thrombin substrate. Followed by similar approach, I used small thrombin substrate (Z-

GGR-MCA) to investigate the thrombin activities in the clots grown under flow with healthy 

human blood. First, I let the clots grow with HCTI-treated blood perfused over collagen/TF 

surface at 100 s-1 for 500 seconds. Washed by HBS, the clots were introduced with 

fluorogenic thrombin substrate. Under flow, fluorescence intensity reached to steady state 

quickly. When the flow stopped, the substrate was cleaved by thrombin and the 

fluorescence product accumulated (Figure 5-2). By using the first few points in the linear 

region, we can estimate the thrombin concentration by Michaelis–Menten kinetics. Here, 

I presented the primary results, and the thrombin was calculated to be 11.8 µM when the 

substrate concentration was 100 µM. However, it requires replicates and tests at different 

conditions. It would also be useful to simulate with COMSOL. 
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Figure 5-2. Estimation of thrombin concentration in clots by fluorogenic substrate. 
Clots were formed at 100 s-1 with HCTI-treated blood perfused over collagen/TF surface. 
Washed by HBS, the clots were introduced to thrombin substrate. The concentration was 
estimated by Michaelis–Menten kinetics. 

 

Here, I developed two methods to estimate thrombin concentration in the clots. 

The primary results were shown in Figure 5-3 and Table 5-1 compared with other 

published results. Although it requires replicates in both methods, it is going to be helpful 

for establishing mass balance at arterial shear rate. 
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Method [IIa]core at 

500 sec 
Experimental Set up Methods Publication 

Transient Mass Balance 15 μM High CTI 

1-inlet 1-outlet device (60 μm) 

200 s-1 

TAT, F1.2 ELISA ATVB 
(2018) 

Reduced Model 9 μM 
 

7 rates, 2 KD, 
enzyme half-
lives=1 min 

PLOS 
comp. bio.  

2019) 

Convection-Diffusion 
Model 

5.5 μM 
 

COMSOL  

F1.2, D-dimer 
ELISA 

2 KD 

PLOS 
comp. bio. 

(2019) 

Active sides labeled  

by F-PPACK 

1.6 μM High CTI 

8-channel device (120 μm) 

100 s-1 

8-channel 
standard curve 

 

Thrombin Activity  

by Z-GGR-AMC 

11.8 μM 
(100 μM) 

3.9 μM 
(200 μM) 

High CTI 

8-channel device (120 μm) 

100 s-1 

Dynamic 
parameters 

 

Table 5-1. Results of thrombin concentration in the clots by different methods.  
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Figure 5-3. Results of thrombin concentration in the clots by different methods.  
The mean and distribution are from sensitivity analysis described previously. Estimation 
of thrombin in the clots by active sites labeling and fluorogenic substrate is shown in the 
figure compared other published results. 
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CHAPTER 6: APPENDIX I (SUPPLEMENTAL MATERIALS) 
 

 

Calculation of free thrombin concentration in clots 

To calculate the concentration of free thrombin, two reactions were considered. 

Thrombin can bind reversibly to weak sites (Eq. 1) and γ’ sites (Eq. 2) of fibrin. According 

to the mass conservation principle, at equilibrium, the total thrombin (CIIa,total) is the sum of 

free thrombin (CIIa), thrombin on low-affinity binding sites ( S 
weak ) and thrombin on γ’ sites 

( S 
γ' ). The total numbers of each sites ( θ 

weak
total, θtotal 

γ' ) are the sum of vacancy ( θ 
weak , θ 

γ' ) 

and filled sites ( S 
weak , S 

γ' ), respectively. With the equilibrium constant of both reactions, 

we were able to determine the concentration of every species.  

 

(1) 

 

(2) 

 

 

(3) 

 

(4) 

 

 

 (5) 

(6) 

  

⎩
⎨

⎧𝐼𝐼𝑎 + 𝜃	56,7 	
⇔ 𝑆	56,7

	
	

𝐼𝐼𝑎 + 𝜃	
48 	

⇔ 𝑆	
48 										

 

⎩
⎪
⎨

⎪
⎧ 1

𝐾9	
56,7 =

𝑆	56,7

𝐶++, × 𝜃	56,7 =
𝑆	56,7

(𝐶++,,010,2 − 𝑆	56,7 − 𝑆	
4! )	( 𝜃	56,7

010,2 − 𝑆	56,7 )	
1
𝐾9	

48 =
𝑆	

48

𝐶++, × 𝜃	
48 =

𝑆	
48

(𝐶++,,010,2 − 𝑆	56,7 − 𝑆	
4! )	( 𝜃010,2	

48 − 𝑆	
48 )

																						

 

𝜃	56,7
010,2 = 𝜃	56,7 + 𝑆	56,7  

 
𝜃010,2 = 𝜃	

48
	

48 + 𝑆	
48  



www.manaraa.com

97 

 

Supplemental Figure I High CTI treated whole blood perfused through blank channels 
(no collagen/no TF) produced essentially undetectable levels of F1.2 regardless of 
presence or absence of GPRP. This indicated that high dose CTI of 40 μg/ml quenches 
FXIIa in the inlet reservoir and flow channels of the microfluidic device. 
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Estimation of core thickness and core porosity 

 

 

Supplemental Figure II Measurements of 15-micron thick fibrin-rich layer within thrombus 
formed under flow. With assumption that thrombin and fibrin cannot exist inside a platelet, 
thrombin and fibrin exist in the pore space around the platelets.  Averaging through the 
clot with two compartments, the platelet compartment and the fibrin compartment, we have 
a core height δ=15 µm and porosity ε=0.5. 
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Calculation of intrathrombus thrombin levels using TAT Elisa and F1.2 Elisa  

By collection of microfluidic device effluent, the exit concentration of discrete 

samples was measured at discrete time points ti and then averaged (𝑐̅i for n donors).  Over 

the first 500 sec of clotting under flow, the flux of thrombin from the surface increased 

linearly with time (Fig. 4A).  By either summing up cumulative mass in each sample volume 

(Vi * 𝑐̅i for i samples) or equivalently by integrating the fitted flux JFIIa(t), the total average 

amount of thrombin generated per total collagen/TF area was calculated.    

Over the first 500 sec, the average thrombin generation as estimated by TAT (with 

GPRP present) was statistically identical to F1.2 generation (with no GPRP present). F1.2 

was assumed to be a gold standard metric of thrombin generation since one molecule of 

F1.2 is generated per molecule of thrombin generated.  From Fig. 4A, thrombin flux 

determined via F1.2 assay (without GPRP) increased linearly with time and reached a 

value of ~0.5 x 10-12 nmole/μm2-sec by 500 sec, essentially identical to thrombin flux 

determined with TAT assay with GPRP present. Thus, the thrombin generated over the 

first 500 seconds was calculated by integration of the F1.2 flux from the surface: 

𝐹𝐼𝐼𝑎	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑜𝑣𝑒𝑟	500 sec =	 𝐹1.2	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑜𝑣𝑒𝑟	500	𝑠𝑒𝑐 

= R 𝐽!".$(𝑡)	𝑑𝑡
);;

;
≅ 92000	

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝜇𝑚$  

Of the 92,000 molecules of thrombin made per μm2 over the first 500 sec of flow, 

the TAT assay indicated that only 15 % of the thrombin escaped the clot to form TAT when 

fibrin was present. A mass balance at 500 sec on thrombin requires: 

 FIIa generated (by F1.2 assay) =   FIIa escaped and complexed at TAT (15% by TAT 
Elisa) 

     + FIIa escaped and complexed to other inhibitors (estimated1) 

     + FIIa captured by fibrin (Calculated)  

For 92000 molecules of thrombin, 15 % escapes the clot as detected as TAT (15% 

of 92000 = 13800 molecules TAT).   We estimate that 70% of the escaped thrombin will 
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complex with antithrombin to form TAT (13800 molecules) and 30% of escaped thrombin 

will go undetected (eg. thrombin-macroglobulin, thrombin-C1 inhibitor) (5,900 molecules) 

(See footnote 1).  For 92000 molecules of thrombin made, of which 19,700 escape the 

clot as either TAT or other inhibited forms, a total of 72300 molecules of thrombin are 

captured within the clot.  We calculate the thrombin concentration in the fibrin space (50% 

of the clot volume) of the clot core (the 15-micron layer) to be: 

Intrathrombus [thrombin] =   72300 molecules/μm2  ÷  (7.5 μm3 -fibrin gel/μm2-

collagenTF area),which corresponds to a local concentration of ~ 15 μM of intrathrombus 

thrombin in the fibrin space.  

   

 
1We observed that the amount of F1.2 made in the presence of GPRP was ~30-50% 

greater than the amount of TAT detected in the presence of GPRP (Fig. 4A). This difference is 

expected, in part, since some of the thrombin released from the clot might be inhibited by C1 

inhibitor or α2MG and not detected as TAT. From here, we can estimate that about 70% of escaped 

thrombin complexes with antithrombin and 30% captured by other inhibitors. 
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Calculating intrathrombus fibrin levels from D-dimer endpoint assay Elisa and FPA 

Elisa. 

From D-dimer endpoint ELISA, each D-dimer detected was considered equivalent 

to a single fibrin monomer containing two D domains. The volume of pore space of clot 

core (V) was calculated using the following equation, where A is the thrombotic area per 

channel (A = 8 channels x 250μm x 250μm), δ is the core thickness (δ = 15 μm) and ε = 

0.5 is overall porosity averaged over the entire collagen-TF surface (Supplement Fig. II), 

which is covered relatively equally by dense platelet-rich thrombus deposits (εthrombus~ 0.3) 

and dense fibrin deposits (εfibrin=0.95): 

Average volume of the pore space of the clot core, V = A	 × 	δ	 × ε	  

All the D-dimer molecules (or equivalently fibrin monomers) detected in the 

endpoint assay were then placed in the pore space of core layer.  This allowed the 

determination of the final average fibrin concentration at 800 sec in the clot to be 28.3 ± 

11.4 mg/mL.  From the 800-sec endpoint measurement to calibrate the dynamic 

fluorescence signal obtained by microscopy (Fig. 4C), the intrathrombus fibrin 

concentration in the pore space of the clot at 500 sec is 15 mg/mL, and fibrin porosity was 

calculated to be εfibrin = 0.95, based on a fibrin fiber density of 280 mg-fibrin/mL-fiber. For 

fibrin at a density of 15 mg/mL, the copy number of fibrin monomer is 203000 in a volume 

of 7.5 μm3. The concentration is 45 μM with 13.5 μM γ’-sites (0.3 sites/monomer) and 72 

μM low affinity sites (1.6 sites/monomer).  
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Estimating intrathrombus prothrombinase level from Michaelis–Menten kinetic 

model. 

From the activation of prothrombin (II) by the prothrombinase complex (XaVa) 

𝐼𝐼 + 𝑋𝑎𝑉𝑎
	
↔ 𝐼𝐼: 𝑋𝑎𝑉𝑎

7"#$a⎯c 𝐼𝐼𝑎 + 𝑋𝑎𝑉𝑎 

Given that thrombin flux increased linearly and reached a value of ~0.5 x 10-12 

nmole/μm2-sec by 500 sec, we assume that prothrombinase concentration to be 

[𝑋𝑎𝑉𝑎](𝑡) = 𝛽 ∙ 𝑡, 𝛽	[=]	𝜇𝑀/𝑠 

We can get the following equation from Michaelis–Menten model, 

[𝐼𝐼𝑎] = R
𝑘<,0	[𝐼𝐼]
𝐾= + [𝐼𝐼]

[𝑋𝑎𝑉𝑎](𝑡)	𝑑𝑡
);;	>

;
 

We calculated β to be 6.48 x 10-6 μM/s, for 20 μM (92,000 molecules per 7.5 μm3) 

of thrombin made by the first 500 sec, 1.4 μM of prothrombin, kcat = 30 s-1 and Km = 0.3 

μM (Leiderman and Fogelson, 2010). We then calculate the prothrombinase concentration 

to be 3.2 nM in the pore space (ε = 0.5) of the clot core (δ = 15 μm), which corresponds 

to a total number of 15 molecules of intrathrombus prothrombinase in active form. We 

expect ~102 of Factor Xa were made over the first 500 sec, but 90% was inhibited by the 

antithrombin III system. 
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Supplement Figure III. The concentration of the procoagulants (A, B, C), thrombin 
distribution (D, E), fibrin, flux of F1.2 and TAT (G,H) with the normal plasma protein 
levels and thrombin binding sites. 
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